Decarb Lunchseries

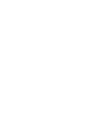
The Cost of Zero Carbon Development

Mon May 27, 2024, from 12- 1pm PST Free Webinar I zebx.org

ZERO EMISSIONS INNOVATION CENTRE

ZCC 'S **BUILDING** DECARBONIZATION TEAM

Carbon Leadership Forum **British** Columbia

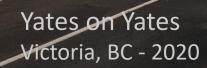


CHARD

Guidance in Decision Making for Large-Scale Multi-Family Residential Developers

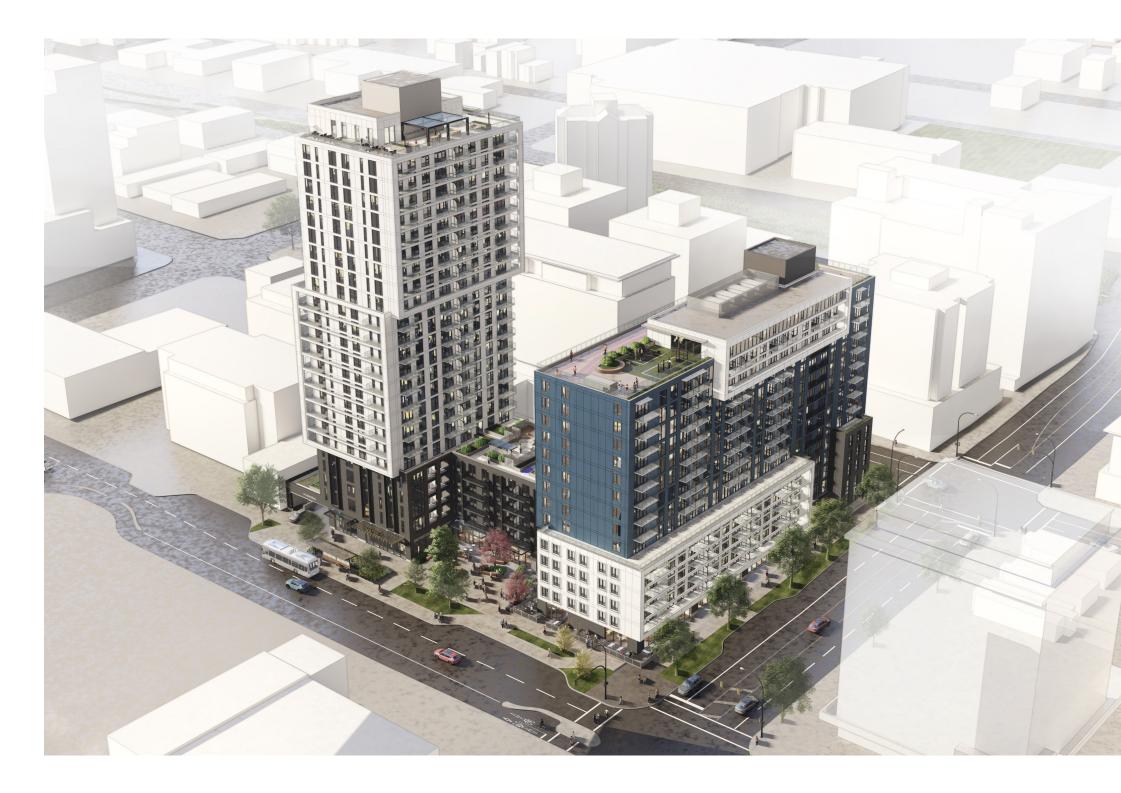
BC Hydro

From condominium homes to rental apartments to commercial spaces, Chard Development has completed over 1.3 million square feet of residential and commercial development and delivered close to 1,400 homes in Metro Vancouver and Greater Victoria.


We are proud to be a catalyst for growth and positive forward momentum. After 30 years, and while our portfolio continues to grow, one thing remains the same. We make good on our promises and stand proudly behind the product we deliver.

YATESGENTRE

Juliet Victoria, BC - 2008



1050 Yates Victoria, BC

Located in the Harris Green neighbourhood of Victoria at the intersection of Cook and Yates street, 1050 Yates will bring close to 500 purpose-built rental homes with marketleading amenities and a street-facing public plaza for the community.

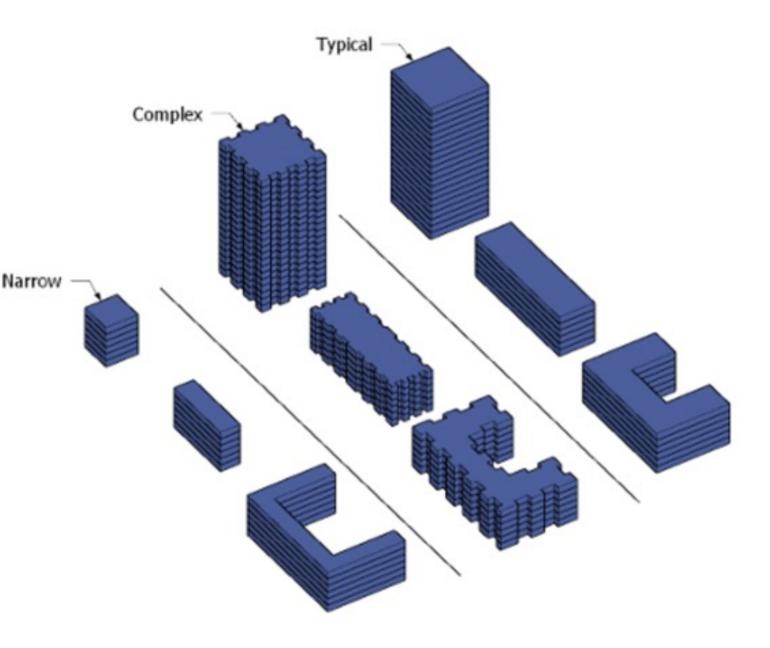
Context

Why we commissioned the study

We make decisions quickly and we needed better data!

Energy use & what we've been building...

Last 2 decades – merchant development (condos)

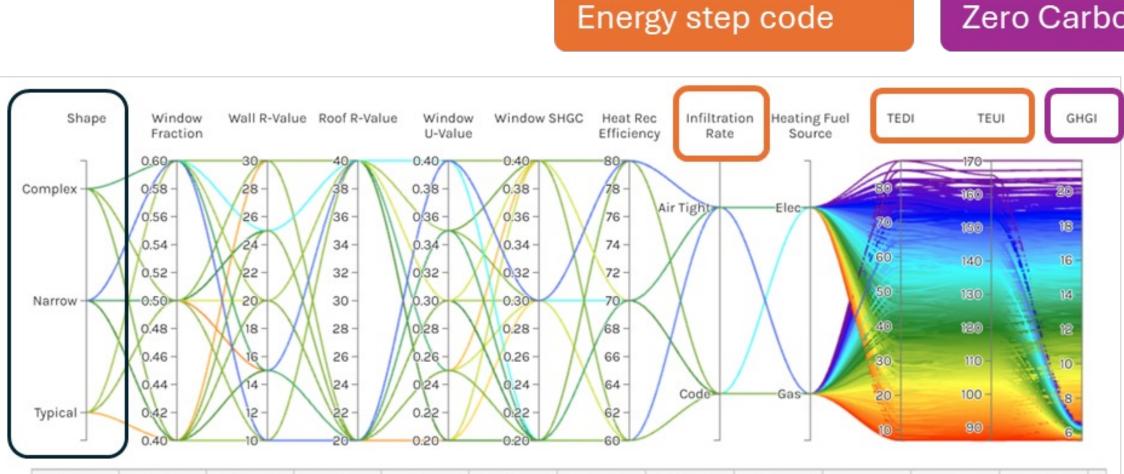

- Energy usage targets code, LEED, etc.
- Long-term operating costs part of the equation?
- Business case for better enclosure?

Higher cost -> increase sales price -> project risk

Today – new income producing properties (purpose-built rental)

- Net operating income energy usage = operating costs = some control
- Building shape matters (form and massing)

Key metric



Building Shape (Form/Massing) affect energy usage

Key metric – VFAR (vertical surface to floor area ratio)

Parametric Energy Modeling

An existing useful tool

Shape	Window Fraction	Wall R-Value	Roof R- Value	Window U- Value	Window SHGC	Heat Rec Efficiency	Infiltration Rate	Heating Fuel Source	TEDI	TEUI	GHGI	
Typical	0.4	10	20	0.2	0.2	60	Air Tight	Elec	20.44	98.75	5.79	^
Typical	0.4	10	20	0.2	0.2	60	Air Tight	Gas	20.44	99.64	8.89	
Typical	0.4	10	20	0.2	0.2	60	Code	Elec	25.63	103.75	5.85	
Typical	0.4	10	20	0.2	0.2	60	Code	Gas	25.63	104.9	9.88	
Typical	0.4	10	20	0.2	0.2	70	Air Tight	Elec	17.87	96.17	5.76	

Zero Carbon Step Code

- Free, online, great starting point
- Work with a few key consultants early
- Operational & Embodied Carbon
- Costs not currently attached

Cost Index Tool

New, for high-level planning

Energy/Zero Carbon Code, Costing Information

		MECHANICAL SYSTEMS							
		NATURAL GAS	MIXED FUEL	ELECTRIFIED					
	Standard Design	Does not meet step code requirements	Step 2 EL-2	Step 2 EL-4					
BUILDING ENCLOSURE &	ENHANCED	Step 2 EL-1	Step 3 EL-2	Step 3 EL-4					
DEMAND REDUCTION	HIGH Performance	Step 3 EL-2	Step 4 EL-2	Step 4 EL-4					
	PASSIVE HOUSE	Step 4 EL-2	Step 4 EL-2	Step 4 EL-4					

		TABLE	5: Cost Index	TOOL			
	CENTRALIZED NATURAL GAS SYSTEMS	DECENTRALIZED MIXED FUEL SYSTEMS	CENTRALIZED ELECTRIFIED	DECENTRALIZED ELECTRIFIED			
STEP	Baseline	0.89 0.75 0.94	0.95 0.99 0.94		included in ana		
2	Baseline	1.07	0.95				
Step 3	1.03 0.93 1.0 1.04 0.75 1.0		1.0 0.99 1.0	1.11 1.38 1.0	0.93 0.76 1.0	0.97 0.89 1.0	
3	0.93	0.99	0.91	0.87	1.07	0.98	
Step 4	1.14 0.99 1.11 1.15 0.85 1.0		1.05 1.09 1.04	Not included in analysis			
4	0.78	0.84	0.86				

	TABLE 3: CASE	STUDY BUILDING MED	HANICAL SYSTEM O	PTIONS
	NATURAL GAS	MIXED FUEL	CENTRALIZED ELECTRIFIED	DECENTRALIZED ELECTRIFIED
Heating	Central Natural gas high efficiency condensing boiler serving 4-pipe hydronic fan coil units (FCUs)	Electric Baseboard Heaters (EBBH)	Centralized air-source Heat pumps with Electric Boiler backup,	Option 1: Ductless mini- split heat pumps Option 2: EBBH Option 3: Combined HRV/Heat Pump Unit
Cooling	Central Water-cooled chiller serving 4-pipe hydronic FCUs	Suite-level Packaged Terminal Air Conditioners (PTAC)	serving 4-pipe FCUs	Option 1: Ductless mini- split heat pumps Option 2: PTAC Option 3: Combined HRV/Heat Pump Unit
Domestic Hot Water	Central Natural gas high efficiency condensing boiler	Central Natural gas high Efficiency Condensing boiler	Central Electric boiler	Central Electric boiler

CHARD

Schematic Design Information

	STANDARD DESIGN	ENHANCED	HIGH PERFORMANCE	PASSIVE HOUSE PERFORMANCE	
,	R-10	R-15	R-20	R-25	
NCE	Standard	ligh Performance	Passive House	Passive House	
	Double	Double	Double	Triple	
	Standard	Standard	Standard	Passive House	
	70%	70%	80%	85%	

THE COST OF ZERO CARBON DEVELOPMENT NAVIGATING DEVELOPMENT WITH THE ZERO CARBON STEP CODE

MADDY KENNEDY-PARROTT NEIL NORRIS

BCHydro Power smart

PROJECT BACKGROUND

TABLE 1: ZERO CARBON STEP CODE TARGETS FOR PART 3 RESIDENTIAL OCCUPANCIES

European I surs	CARBON PERFORMANCE	GHGI LIMIT
EMISSION LEVEL	(CARBON REDUCTION)	(kgCO2e/m2/Year)
EL-1	Baseline	Report Design Only
EL-2	Moderate	7.0
EL-3	Strong	3.0
EL-4	Net-Zero	1.8

What combinations of mechanical and enclosure systems are suitable in BC?

How will typical project capital costs be impacted?

What are the changes in operational costs to consider for long term ownership?

How to assess the financial impact of code and policy changes on projects that are already designed, to consider potential changes before breaking ground for construction?

CASE STUDY BUILDING

CLOSE TO 500 RENTAL UNITS 4 COMMERCIAL RETAIL UNITS 8000SF AMENITY SPACE 15- & 25- STOREY TOWERS 37% WINDOW TO WALL RATIO 24% SPANDRELS, 39% WALLS

METHODOLOGY

01. Typical Step Code Compliance Modelling

- \rightarrow Real project
- \rightarrow Standardized inputs

02. Parametric Modelling

- → 6 Mechanical Systems
 - \rightarrow Chosen for analysis

→ Compliant Step Code model

→ City of Vancouver Energy Modelling Guidelines

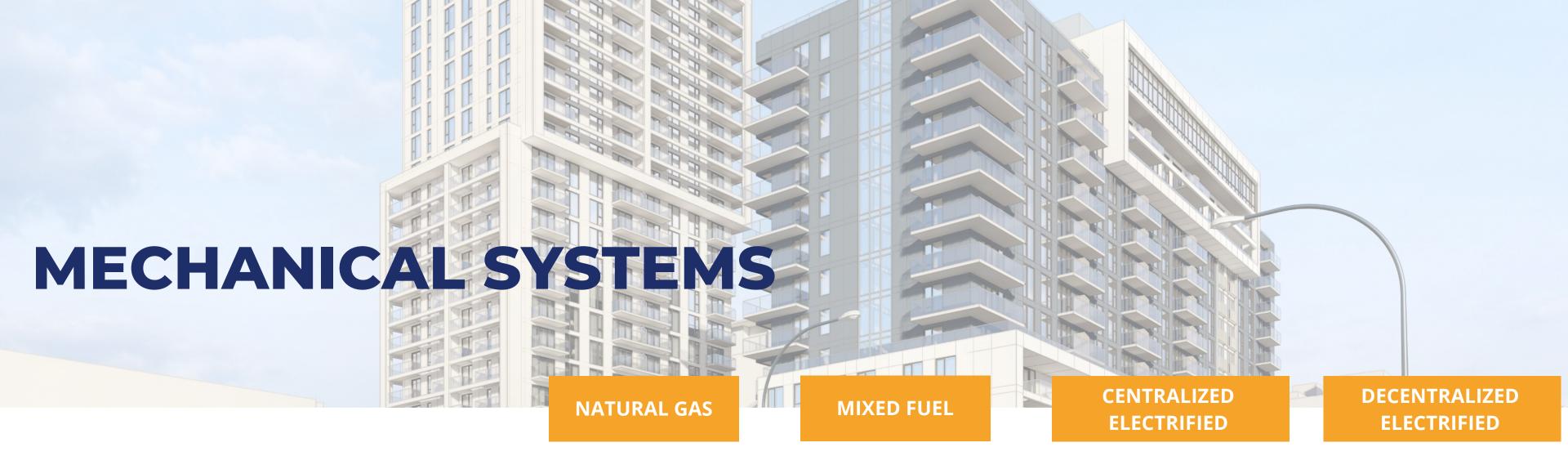
 \rightarrow Main driver for parametric study

→ Modify compliant model using chosen mechanical systems

 \rightarrow Tweak enclosure performances to meet targets

→ Resulted in 4 unique "bundles" of enclosure performance

 \rightarrow Resulted in 12 compliant models


 \rightarrow 9 for interactions between ZCSC and ESC

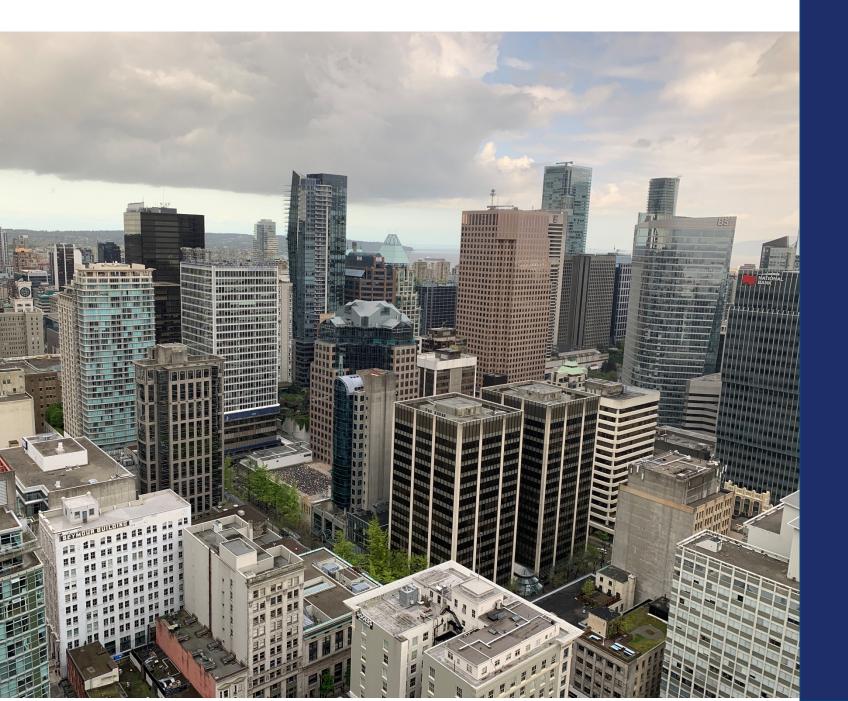
 \rightarrow 3 to review decentralized electrification

HEATING	CONDENSING BOILER FAN COIL UNITS	ELECTRIC BASEBOARDS	AIR-SOURCE HEAT PUMPS FAN COIL UNITS	MINISPLITS ELECTRIC BASEBOARDS HRV/HEAT PUMP
COOLING	WATER-COOLED CHILLER FAN COIL UNITS	PTAC UNITS	AIR-SOURCE HEAT PUMPS FAN COIL UNITS	MINISPLITS PTAC UNITS HRV/HEAT PUMP
DOMESTIC HOT WATER	CONDENSING BOILER	CONDENSING BOILER	ELECTRIC WATER HEATERS	ELECTRIC WATER HEATERS

LOAD REDUCTION: **ENCLOSURE & HEAT RECOVERY**

WALL PERFORMANCE **INCLUDES THERMAL BRIDGING**

WINDOW WALL FRAME AND SPANDREL PERFORMANCE


GLAZING AIRTIGHTNESS HRV EFFICIENCY

R-10	R-15	R-15 R-20 R				
STANDARD	HIGH PERFORMANCE	PASSIVE HOUSE				
	DOUBLE					
	STANDARD					
70)%	80%	85%			

STANDARD

ASSUMPTIONS

Capital Costs

- software
- \rightarrow Enclosure:
- \rightarrow Mechanical:
 - → Systems as described
 - controls, or fire protection

Operational Costs

- \rightarrow Electricity costs:
 - \rightarrow Residential rate within suites
 - use
 - → \$0.0975-\$0.1078 per kWh
- \rightarrow Natural gas costs:

 - → \$7.58 \$8.25 per GJ
- \rightarrow Carbon Taxes
 - \$170/tonne of CO2e emissions
 - \rightarrow
- Maintenance costs not included \rightarrow

Energy Modelling Inputs

- - → Only residential systems were modified

\rightarrow Based on real multi-family projects if possible \rightarrow Otherwise based on commercially available estimating

→ Primarily windows, insulation, cladding attachment \rightarrow Does not include cladding, doors, roofing, balcony, waterproofing

 \rightarrow Does not include plumbing, DHW piping/fixtures, automation &

Commercial rate for centralized systems and/or common area energy

Commercial rate estimated based on peak load

Based on projections from the Federal 2030 Emissions Reductions Plan

→ MUA, Amenity, Retail Spaces remained unchanged for all models

LIMITATIONS

High-Level "Back of the Envelope" Analysis

- \rightarrow Results will vary by project
- \rightarrow Not all mechanical systems included
- → Detailed costs & energy compliance is building specific
- → This tool is for high-level decision making, not detailed costing or energy compliance

Lessons learned are still applicable to large-scale multi-family buildings on a wider scale and will provide useful insights about modifying designs

RESULTS

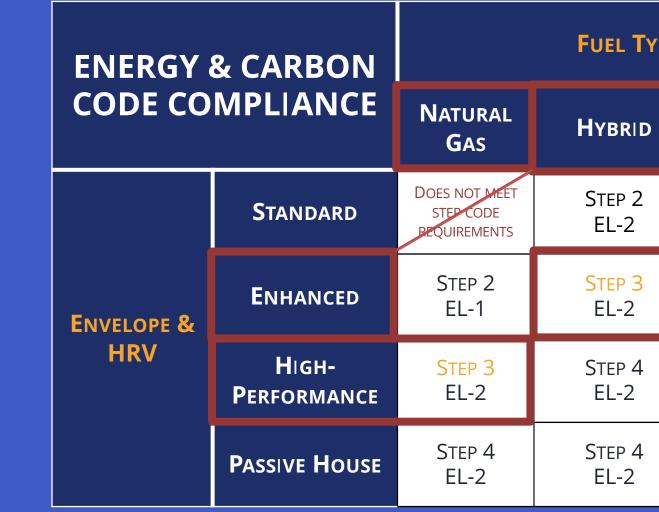
ENERGY	& CARBON	FUEL TYPE					
CODE CO	MPLIANCE	NATURAL GAS	Hybrid	ELECTRIFIED			
	Standard	DOES NOT MEET STEP CODE REQUIREMENTS	Step 2 EL-2	Step 2 EL-4			
Envelope &	ENHANCED	Step 2 EL-1	Step 3 EL-2	Step 3 EL-4			
HRV	High- Performance	Step 3 EL-2	Step 4 EL-2	Step 4 EL-4			
	Passive House	Step 4 EL-2	Step 4 EL-2	Step 4 EL-4			

COST		Centralized	Decentralized		DEC	ENTRALIZED E	LECTRIFIED
INDEX TOOL		NATURAL GAS SYSTEMS		CENTRALIZED ELECTRIFIED	MINISPLIT	S BASEBOAR PTAC	DS / INTEGRATED HRV HEAT PUMP
	2	Baseline	0.89 0.75 0.94	0.95 0.99 0.94			
		Baseline	1.07	0.95	N/A		
Target Energy	3	1.03 1.0 1.04	0.93 0.75 1.0	1.0 0.99 1.0	1.11 1.38 1.(0.93 0.76 1	
Step		0.93	0.99	0.91	0.87	1.07	0.98
		1.14 1.11 1.15	0.99 0.85 1.0	1.05 1.09 1.04	N/A		
		0.78	0.84	0.86			
						Capital C	Cost Index
						iechanical Cost Index	Envelope Cost Index

Operational Cost Index

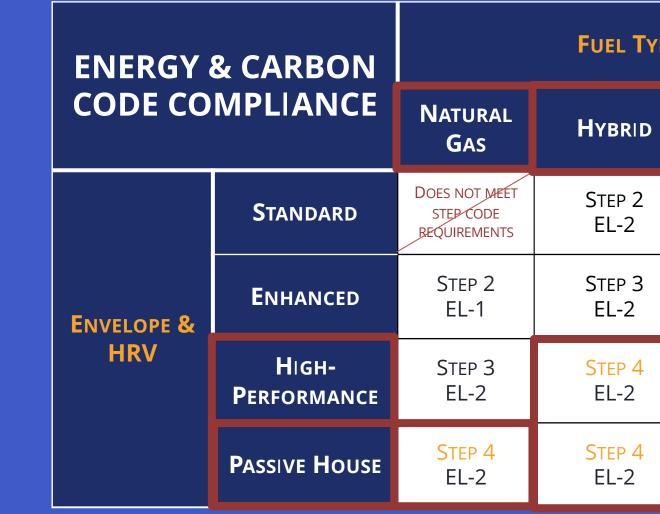
						DECEN	TRALIZED ELECT	
				DECENTRALIZED	CENTRALIZED	DECEN		KIFIED
		DEX N	ATURAL GAS	MIXED FUEL		MINISPLITS	BASEBOARDS / PTAC	INTEGRATE HRV HEAT PUMP
ENERGY	& CARBON		FUEL T	YPE				
	MPLIANCE	Natural Gas	Hybrid	E LECTRIFIE	D		N/A	
	Standard	Does not meet step code requirements	Step 2 EL-2	Step 2 EL-4		1.11 1.38 1.0	0.93 0.76 1.0	0.97 0.89 1.
ENVELOPE &	ENHANCED	Step 2 EL-1	Step 3 EL-2	Step 3 EL-4		0.87	1.07	0.98
HRV	High- Performance	Step 3 EL-2	Step 4 EL-2	Step 4 EL-4			N/A	
	Passive House	Step 4 EL-2	Step 4 EL-2	Step 4 EL-4				

EN


			OST	CENTRALIZED DECENTRALIZED			DECENTRALIZED ELECTRIFIED		
ERC	GY STEI			VATURAL GAS			MINISPLITS	BASEBOARDS / PTAC	INTEGRATED HRV HEAT PUMP
	ENERGY & CARBON CODE COMPLIANCE			FUEL T	YPE				
			Naturai Gas	Hybrid	ELECTRIFIE	D	N/A		
		Standard	DOES NOT MEE STEP CODE REQUIREMENT		Step 2 EL-4		1.11 1.38 1.0	0.93 0.76 1.0	0.97 0.89 1.0
	Envelope &	ENHANCED	Step 2 EL-1	Step 3 EL-2	Step 3 EL-4		0.87	1.07	0.98
	HRV	High- Performance	Step 3 EL-2	Step 4 EL-2	Step 4 EL-4			N/A	
		Passive House	Step 4 EL-2	Step 4 EL-2	Step 4 EL-4		N/A		

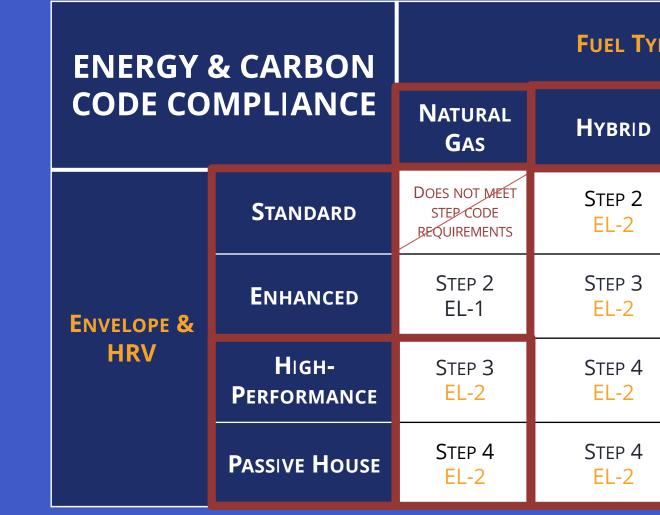
COST INDEX

ENERGY STEP 3:


DEC	CENTRALIZED		DECEN	TRALIZED ELECT	TRIFIED			
	IXED FUEL		MINISPLITS	BASEBOARDS / PTAC	INTEGRATED HRV HEAT PUMP			
YPE				N/A				
	ELECTRIFIED	•	NZA					
	Step 2 EL-4		1.11 1.38 1.0	0.93 0.76 1.0	0.97 0.89 1.0			
	Step 3 EL-4		0.87	1.07	0.98			
	Step 4 EL-4							
	Step 4 EL-4			N/A				

COST INDEX

ENERGY STEP 4:


DEC	CENTRALIZED		DECENT	TRALIZED ELECT	TRIFIED			
			MINISPLITS	BASEBOARDS / PTAC	INTEGRATED HRV HEAT PUMP			
(PE				NI/A				
	ELECTRIFIED		N/A					
	Step 2 EL-4		1.11 1.38 1.0	0.93 0.76 1.0	0.97 0.89 1.0			
	Step 3 EL-4		0.87 1.07 0.9					
	Step 4 EL-4		N/A					
	Step 4 EL-4							

COST INDEX

EMISSION LEVEL 2:

DE	CENTRALIZED		Decen	TRALIZED ELECT	TRIFIED			
	IXED FUEL		MINISPLITS	BASEBOARDS / PTAC	INTEGRATED HRV HEAT PUMP			
/PE								
	ELECTRIFIED		N/A					
	Step 2 EL-4		1.11 1.38 1.0	0.93 0.76 1.0	0.97 0.89 1.0			
	Step 3 EL-4		0.87	1.07	0.98			
	Step 4 EL-4		N/A					
	Step 4 EL-4							
			_					

EM

SSION LEVEL 4 ENERGY & CARB	INDEX		NTRALIZED		NTRALIZED (ED FUEL			
ENERGY & CARB						MINISPLITS	BASEBOARDS / PTAC	INTEGRATED HRV HEAT PUMP
	BON		FUEL TY	(PE				
	NCE NATU GA		Hybrid		ELECTRIFIED		N/A	
Standa	ARD DOES NOT STEP CO REQUIREN	ODE	Step 2 EL-2		Step 2 EL-4	1.11 1.38 1.0	0.93 0.76 1.0	0.97 0.89 1.0
ENHAN ENVELOPE &	ICED STEP EL-		Step 3 EL-2		Step 3 EL-4	0.87	1.07	0.98
HRV High Perform			Step 4 EL-2		Step 4 EL-4		N/A	
Passive H	House Step EL-		Step 4 EL-2		Step 4 EL-4			

CODE COMPLIANCE

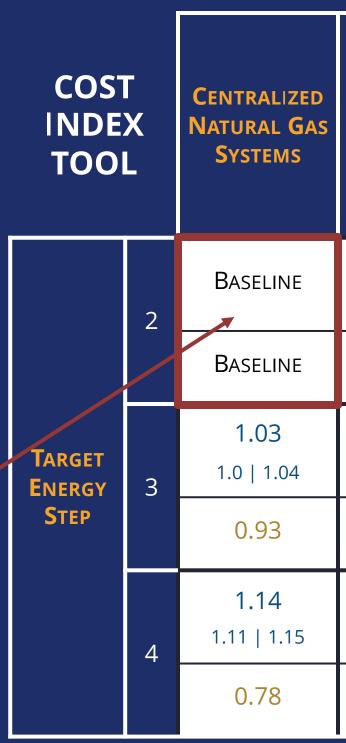
ENERGY	& CARBON	FUEL TYPE				
CODE COMPLIANCE		NATURAL GAS	Hybrid	ELECTRIFIED		
	Standard	DOES NOT MEET STEP CODE REQUIREMENTS	Step 2 EL-2	Step 2 EL-4		
Envelope &	ENHANCED	Step 2 EL-1	Step 3 EL-2	Step 3 EL-4		
HRV	High- Performance	Step 3 EL-2	Step 4 EL-2	Step 4 EL-4		
	Passive House	Step 4 EL-2	Step 4 EL-2	Step 4 EL-4		

Natural gas systems rely on load reduction

EL-2 is achievable for fully natural gas systems targeting upper energy steps, but...

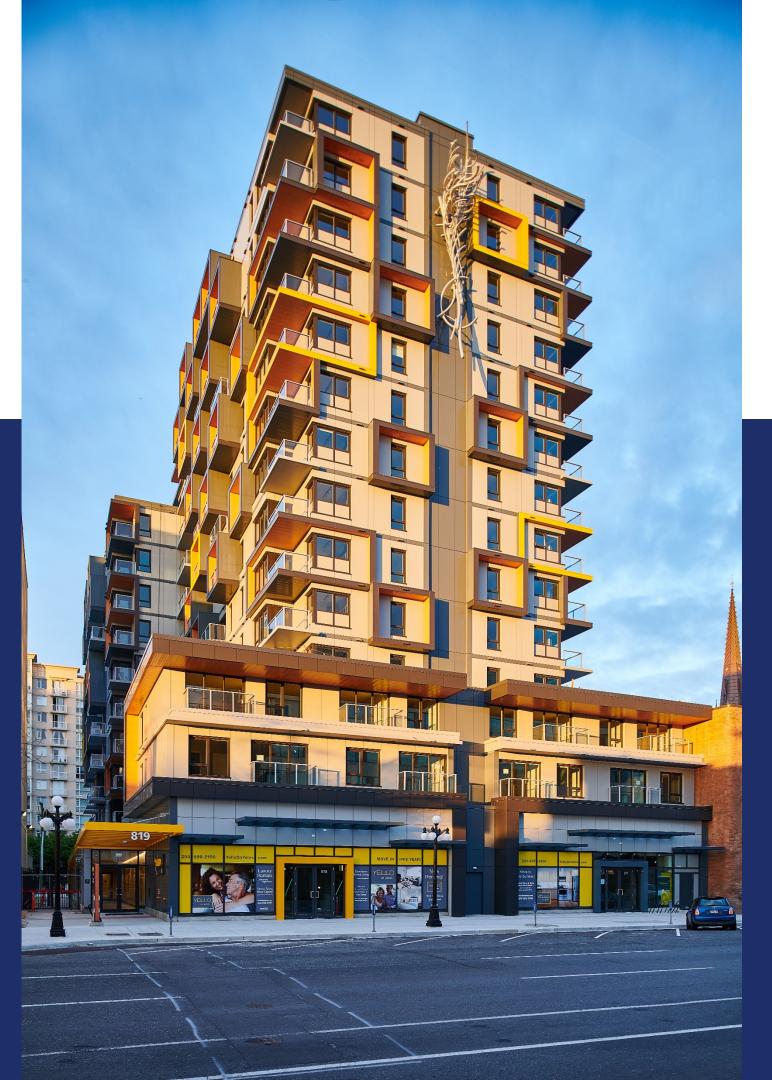
EL-2 is the performance ceiling when major systems that use natural gas

Electrified systems achieve EL-4



ENERGY & CARBON			FUEL TYPE	
CODE CO	MPLIANCE	Natural Gas	Hybrid	ELECTRIFIED
	Standard	Does not meet Step Code Requirements	Step 2 El 2	Step 2 EL-4
Envelope &	ENHANCED	Step 2 EL-1	Step 3 EL-2	Step 3 EL-4
HRV	High- Performance	Step 3 EL-2	Step 4 EL-2	Step 4 EL-4
	Passive House	Step 4 EL-2	Step 4 EL-2	Step 4 EL-4

CODE COMPLIANCE


02 COST IMPLICATIONS

01

DECENTRALIZED			Decent	RALIZED E	LECI	RIFIED	
MIXED FUEL SYSTEMS	CENTRALIZED ELECTRIFIED MINISPLITS		PLITS	BASEBOARD PTAC		INTEGRATED HRV HEAT PUMP	
0.89 0.75 0.94	0.95 0.99 0.94			N/A			
1.07	0.95						
0.93 0.75 1.0	1.0 0.99 1.0	1.11 1.38 1.0		0.93 0.76 1.	.0	0.97 0.89 1.0	
0.99	0.91	0.8	37	1.07		0.98	
0.99 0.85 1.0	1.05 1.09 1.04			N/A			
0.84	0.86	-					
		ī					
				Capital C	ost	Index	
			hanical t Index		Envelope Cost Index		

Operational Cost Index

EXAMPLE 1

Project has already been designed according to a historically typical proforma: natural gas heating & DHW systems.

Project must meet Step 2 energy target per local Energy Step Code adoption.

The AHJ has recently implemented requirements to meet the ZCSC EL-4.

The project must pivot to meet the AHJ's new operational carbon requirements.

Mechanical: \$30M Enclosure: \$30M 10y operating: \$5M Total: \$65M

BUDGETS

ENERGY & CARBON		FUEL TYPE				
CODE CO	MPLIANCE	Natural Gas	Hybrid	ELECTRIFIED		
	Standard	DOES NOT MEET STEP CODE REQUIREMENTS	Step 2 EL-2	Step 2 EL-4		
Envelope &	ENHANCED	Step 2 EL-1	Step 3 EL-2	Step 3 EL-4		
HRV	High- Performance	Step 3 EL-2	Step 4 EL-2	Step 4 EL-4		
	Passive House	Step 4 EL-2	Step 4 EL-2	Step 4 EL-4		

01 CODE COMPLIANCE

02 COST IMPLICATIONS

Decentralized			DECENT	TRALIZED E	LECT	RIFIED	
MIXED FUEL SYSTEMS	CENTRALIZED ELECTRIFIED MINISF		MINISPLITS BASEBOARI PTAC		DS /	INTEGRATED HRV HEAT PUMP	
0.89 0.75 0.94	0.95 0.99 0.94			N/A			
1.07	0.95						
0.93 0.75 1.0	1.0 0.99 1.0	1. ⁻ 1.38		0.93 0.76 1.	.0	0.97 0.89 1.0	
0.99	0.91	0.8	87	1.07		0.98	
0.99 0.85 1.0	1.05 1.09 1.04			N/A			
0.84	0.86						
				Capital C	ost	Index	
			hanical t Index		Envelope Cost Index		

Operational Cost Index

COST IMPLICATIONS OF DESIGN CHANGE

CENTI	STEP 2 CENTRALIZED ELECTRIFIED						
0	.95						
0.99	0.94						
0	.95						

Mechanical 0.99 Enclosure 0.94 Operational 0.95

Mechanical: \$30 x 0.99 = \$30M (no change) Enclosure: \$30M x 0.94 = \$28.2M (-\$1.8M) **Operating: \$5M x 0.95 = \$4.75M** (-\$0.25M)

UPDATED BUDGET

Total: \$63M Savings: **S2M**

EXAMPLE 2

Project has been designed with electric baseboard heaters, PTAC units, and a natural gas DHW system.

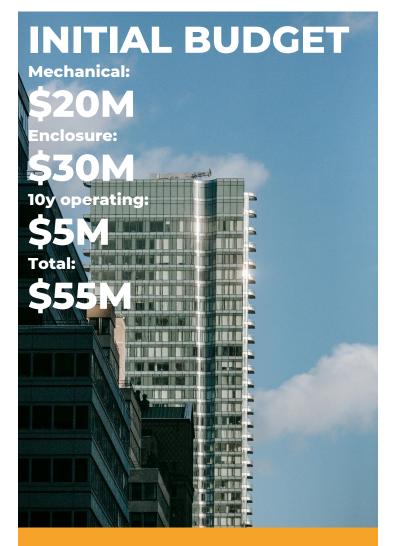
Project team has learned about a newly available incentive funding stream and would like to explore the implications of electrifying and complying with Step 4 energy targets.

Project must meet Step 3 energy target.

BUDGETS

Mechanical: **\$20M Enclosure:** \$**30**M 10y operating: \$5M Total:

02 COST IMPLICATIONS


ENERGY	& CARBON	FUEL TYPE					
CODE CO	MPLIANCE	NATURAL GAS					
	Standard	DOES NOT MEET STEP CODE REQUIREMENTS	Step 2 EL-2	Step 2 EL-4			
Envelope &	ENHANCED	Step 2 EL-1	Step 3 EL-2	Step 3 EL-4			
HRV	High- Performance	Step 3 EL-2	Step 4 EL-2	Step 4 EL-4			
	Passive House	Step 4 EL-2	Step 4 EL-2	Step 4 EL-4			

COST	Г	CENTRALIZED	Decentralized		I	Decent	ralized Eli	CTRIFIED
INDEX TOOL		NATURAL GAS SYSTEMS SYSTEMS		CENTRALIZED ELECTRIFIED	MINIS	PLITS	BASEBOARDS PTAC	/ INTEGRATED HRV HEAT PUMP
	2	Baseline	0.89 0.75 0.94	0.95 0.99 0.94			N/A	
		BASELINE 1.07		1.07	0.95			
Target Energy	3	1.03 1.0 1.04	0.93 0.75 1.0	1.0 0.99 1.0	1. 1 1.38		0.93 0.76 1.0	0.97 0.89 1.0
Step		0.93	0.99	0.91	0.8	37	1.07	0.98
	4	1.14 1.11 1.15	0.99 0.85 1.0	1.05 1.09 1.04			N/A	
		0.78	0.84	0.86				
							Capital Co	st Index
							hanical t Index	Envelope Cost Index
						Ο	perational	Cost Index

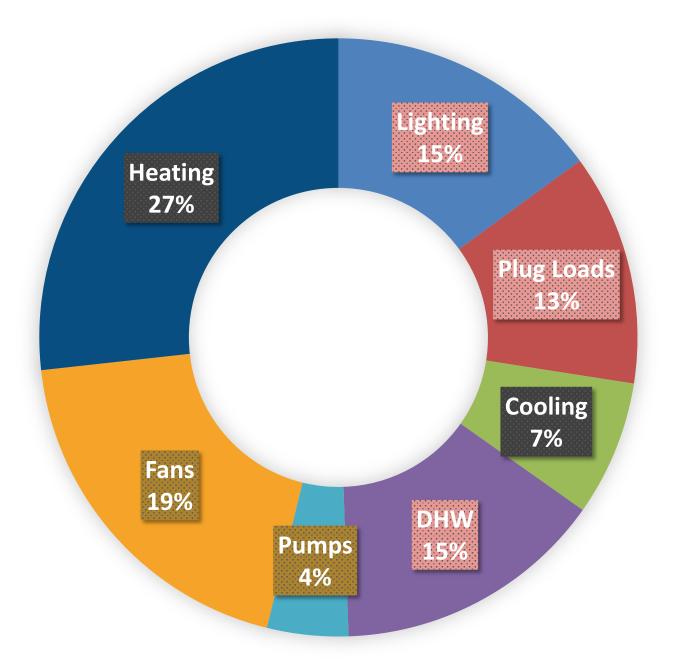
COST IMPLICATIONS OF DESIGN CHANGE

STEP 3 MIXED FUEL			STEP 4 CENTRALIZED ELECTRIFIED 1.05	
0.93				
0.75	1.0		1.09	1.04
0.99			0.86	

Mechanical: 1.09/0.75 x \$20M = \$29M (+\$9M) Enclosure: 1.04/1.0 x \$30M = \$31.2M (+\$1.2M) Operational: 0.86/0.99 x \$5M = \$4.3M (-\$0.7M)

UPDATED BUDGET

Total: \$64.5M Additional Cost: \$9.5M



KEY TAKEAWAYS

THE TEUI PROBLEM

\rightarrow Lighting, Plug Load, DHW energy end-use

- → Mostly standardized inputs
- \rightarrow Minor energy use reduction potential

\rightarrow Fan & pump energy use represents terminal unit energy end-use (FCUs, HRVs)

- \rightarrow Typically governed by airflow rates
- → Minor energy use reduction potential

\rightarrow Cooling energy is not a major energy end-use \rightarrow Heating energy end-use

- → Largest building energy end-use
- \rightarrow Can be reduced by heating load reduction
- \rightarrow Can be reduced by improving system efficiency

THE TEUI PROBLEM

Natural Gas Boiler: 80-96% **Electric Baseboards:** 100%

These efficiencies are comparatively low, and the ceiling for these systems. The only option for reducing energy use (TEUI) is through load reduction

TEDI MODEL VS. TARGET

TEUI MODEL VS. TARGET

TO MEET TEUI REQUIREMENTS,

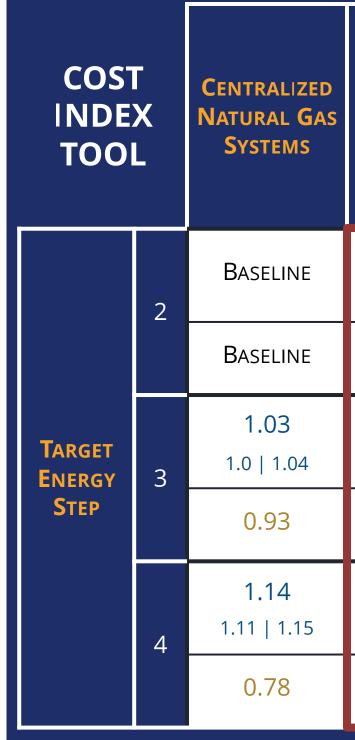
Combined HRV/Heat Pump: 231% **Centralized ASHP:** 300% **PTAC:** 311% **Minisplits:** 350%

Efficiencies are estimates given typical COPs for heat pump systems

NATURAL GAS MODEL RESULTS

HEAT PUMPS

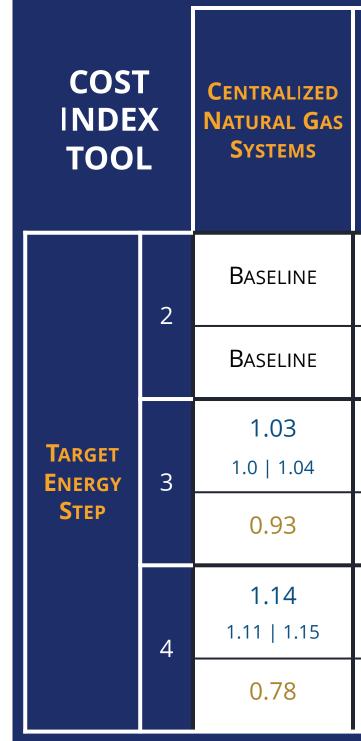
→High Efficiency Systems


 \rightarrow More flexibility for design changes

→ Provides Heating AND Cooling

- → Other systems require additional cooling systems
 - → Natural gas: chiller
 - → Electric baseboards: PTAC

→ Compare low-cost mechanical systems (electric baseboard heater models) with higher-cost options

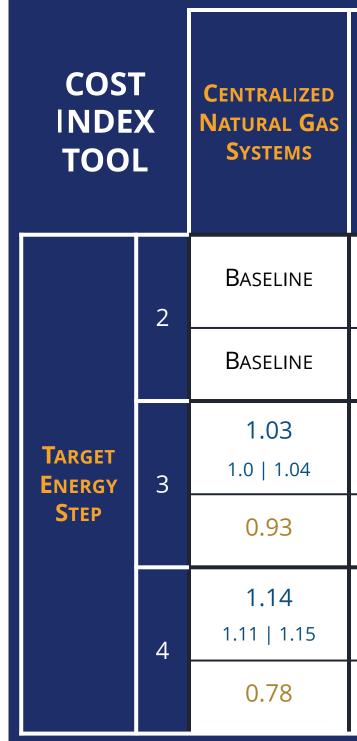

DECENTRALIZED		DECENTRALIZED ELECTRIFIED			
MIXED FUEL Systems	CENTRALIZED ELECTRIFIED	MINISPLITS	BASEBOARDS / PTAC	INTEGRATED HRV HEAT PUMP	
0.89 0.75 0.94	0.95 0.99 0.94		N/A		
1.07	0.95				
0.93 0.75 1.0	1.0 0.99 1.0	1.11 1.38 1.0	0.93 0.76 1.0	0.97 0.89 1.0	
0.99	0.91	0.87	1.07	0.98	
0.99 0.85 1.0	1.05 1.09 1.04	N/A			
0.84	0.86				
			Capital Cost	Index	

cupitare	051 111
Mechanical	En
Cost Index	Cos

Envelope Cost Index

Operational Cost Index

- → Compare low-cost mechanical systems (electric baseboard heater models) with higher-cost options
- → Mechanical costs are significantly lower

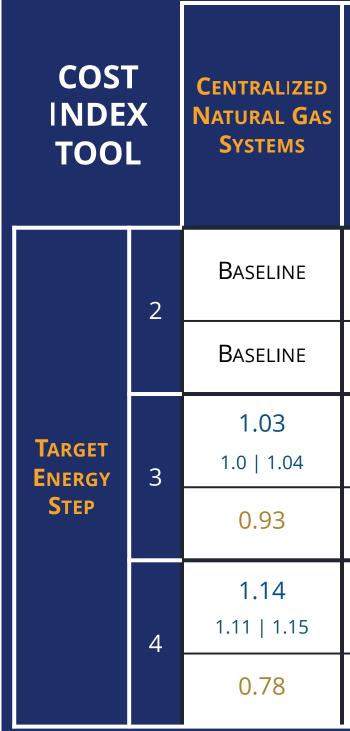

DECENTRALIZED		DECENTRALIZED ELECTRIF			TRIFIED	
MIXED FUEL Systems	CENTRALIZED ELECTRIFIED MINISPLIT	PLITS	BASEBOARD PTAC)S /	INTEGRATED HRV HEAT PUMP	
0.89	0.95					
0.75 0.94	0.99 0.94			N/A		
1.07	0.95					
0.93	1.0	1.1	11	0.93		0.97
0.75 1.0	0.99 1.0	1.38	1.0	0.76 1.	C	0.89 1.0
0.99	0.91	0.8	87	1.07		0.98
0.99	1.05					
<mark>0.85</mark> 1.0	1.09 1.04	N/A				
0.84	0.86					
				Capital Co		
			Mechanical Envelop			Envelope

Operational Cost Index

Cost Index

Cost Index

- → Compare low-cost mechanical systems (electric baseboard heater models) with higher-cost options
- → Mechanical costs are significantly lower
- → Operational costs are significantly higher at lower steps



DECENTRALIZED		DECENTRALIZED ELEC			.ECT	CTRIFIED	
MIXED FUEL Systems	CENTRALIZED ELECTRIFIED MINISPLITS	PLITS	BASEBOARD PTAC	s /	INTEGRATED HRV HEAT PUMP		
0.89	0.95						
0.75 0.94	<mark>0.99</mark> 0.94			N/A			
1.07	0.95						
0.93	1.0	1.1	11	0.93		0.97	
0.75 1.0	0.99 1.0	1.38	1.0	0.76 1.0	C	0.89 1.0	
0.99	0.91	0.8	37	1.07		0.98	
0.99	1.05			_			
0.85 1.0	1.09 1.04	N/A					
0.84	0.86						
				Capital Co	st	Index	
			Mec	hanical		Envelope	

Cost Index Cost Index Operational Cost Index

- → Compare low-cost mechanical systems (electric baseboard heater models) with higher-cost options
- → Mechanical costs are significantly lower
- → Operational costs are significantly higher at lower steps
- → At higher steps, operational costs are comparable or less

DECENTRALIZED					CENTRALIZED ELECTRIFIED		
MIXED FUEL Systems	CENTRALIZED ELECTRIFIED	MINIS	PLITS	BASEBOARE PTAC)S /	INTEGRATED HRV HEAT PUMP	
0.89 0.75 0.94	0.95 0.99 0.94						
1.07	0.95	N/A					
0.93 0.75 1.0	1. 0 0.99 1.0	1.11 1.38 1.0		0.93 0.76 1.	0	0.97 0.89 1.0	
0.99	0.91	0.87		1.07		0.98	
0.99 <mark>0.85</mark> 1.0	1.05 1.09 1.04	N/A					
0.84	0.86						
				Capital Co hanical t Index		Index Envelope Cost Index	

Operational Cost Index

MIXED FUEL

→ Most cost-effective solution

- \rightarrow When maintaining natural gas for DHW
- → In the context of current regulatory environment: while EL-2 still acceptable
- → Not appropriate when AHJs require EL-3 or higher
- → Appropriate for projects with electrical capacity limitations
 - → Northern communities upgrading electrical transmission/delivery

COST INDEX TOOL		Centralized	Decentralized		DECENTRALIZED ELECTRIFIED			
		NATURAL GAS SYSTEMS	MIXED FUEL Systems	CENTRALIZED ELECTRIFIED	MINISPLITS	BASEBOARDS / PTAC	INTEGRATED HRV HEAT PUMP	
	2		Baseline	0.89 0.75 0.94	0.95 0.99 0.94	N/A		
			Baseline	1.07	0.95			
	Target Energy 3 Step		1.03 1.0 1.04	0.93 0.75 1.0	1.0 0.99 1.0	1.11 1.38 1.0	0.93 0.76 1.0	0.97 0.89 1.0
			0.93	0.99	0.91	0.87	1.07	0.98
		4	1.14 1.11 1.15	0.99 0.85 1.0	1.05 1.09 1.04	N/A		
			0.78	0.84	0.86			

DHW

→ Natural Gas results in cheapest option

→ Capital costs AND operational costs

Electric resistance is most expensive option to operate

- \rightarrow May require electrical capacity upgrades to use
- → CO₂ heat pumps potentially best of both worlds
 - \rightarrow Not included in analysis
 - → Highest capital cost option, except if capacity upgrades are required for electrical resistance boilers
 - \rightarrow Gas is approximately 4x cheaper than electricity
 - → CO₂ heat pumps are only 2.5x more efficient than gas, likely still more expensive to operate

ENERGY & CARBON CODE COMPLIANCE			FUEL TYPE			
		NATURAL GAS	Hybrid	ELECTRIFIED		
Envelope & HRV	Standard	Does not meet Step code Requirements	Step 2 EL-2	Step 2 EL-4		
	ENHANCED	Step 2 EL-1	Step 3 EL-2	Step 3 EL-4		
	High- Performance	Step 3 EL-2	Step 4 EL-2	Step 4 EL-4		
	Passive House	Step 4 EL-2	Step 4 EL-2	Step 4 EL-4		

 \rightarrow Somewhat extraneous in many situations \rightarrow Electrified = EL-4 \rightarrow Gas for major systems = EL-2 at best → Backup natural gas systems may achieve EL-3 \rightarrow Backup condensing boilers for coldest day peak loads, etc.

EMISSION LEVEL 3

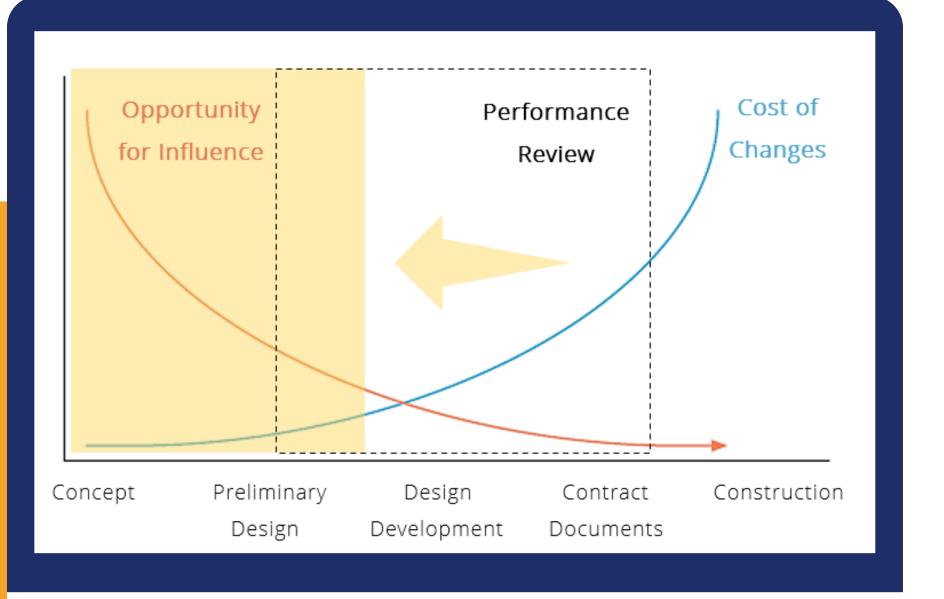
NO BEARING ON COMPLIANCE WITH ZCSC ELECTRIFIED = EL-4

CAPITAL COSTS

WIDE RANGE OF DECENTRALIZED COSTS **COSTS OF CENTRALIZED ELECTRICAL SYSTEMS ADAPTING TO MARKET DEMAND**

MAINTENANCE COSTS

TYPICALLY LOWER FOR CENTRALIZED SYSTEMS


DESIGN FLEXIBILITY

DECENTRALIZED SYSTEMS OFFER MORE OPTIONS

EARLY-STAGE DECISIONS

→ Parametric Modelling

- \rightarrow Project-specific
- → After using tool to determine high-level viability
- → Cost impacts of design changes
 - → Additional consulting fees
 - → Increase design and coordination time
- Diminishing returns at later stages of the design process

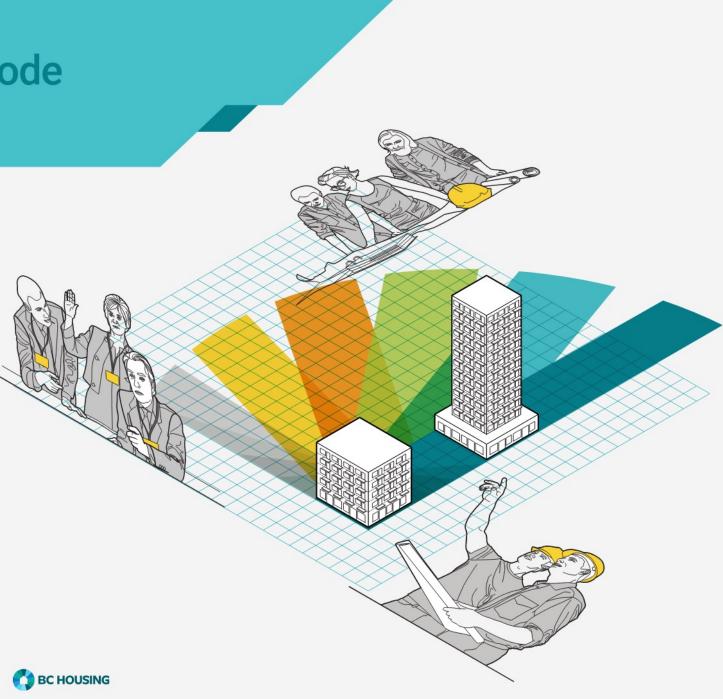
ENERGY & CARBON CODE COMPLIANCE			FUEL TYPE	FUEL TYPE			
		NATURAL GAS	Hybrid	ELECTRIFIED			
Envelope & HRV	Standard	Does not meet step code requirements	Step 2 EL-2	Step 2 EL-4			
	ENHANCED	Step 2 EL-1	Step 3 EL-2	Step 3 EL-4			
	High- Performance	Step 3 EL-2	Step 4 EL-2	Step 4 EL-4			
	Passive House	Step 4 EL-2	Step 4 EL-2	Step 4 EL-4			

→ TEDI \rightarrow Envelope \rightarrow Ventilation → TEUI → Mechanical System Efficiency → GHGI/Zero Carbon Step Code \rightarrow Fuel Type

KEY DESIGN LEVERS

BC Energy Step Code Design Guide

July 2019


ENERGY STEP CODE DESIGN GUIDE

Early design guidance already exists

- \rightarrow Minimize heat loss
 - \rightarrow Building form (VFAR)
 - \rightarrow Assembly performances
- \rightarrow Maximize gains
 - \rightarrow Window layouts
 - \rightarrow SHGC selection
- \rightarrow Optimize ventilation
 - → HRVs & compartmentalization

Main focus is to reduce demand first

DISCUSSION + QUESTIONS

Read the full report at: zebx.org

BC Hydro Power smart

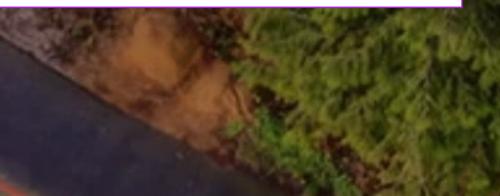
mkennedy-parrott@rdh.com nnorris@rdh.com

RDH Building Science @RDHBuildings

Embodied Emissions

Stream 2

An applied research project for low-rise homes that minimize embodied emissions.


Utility Data

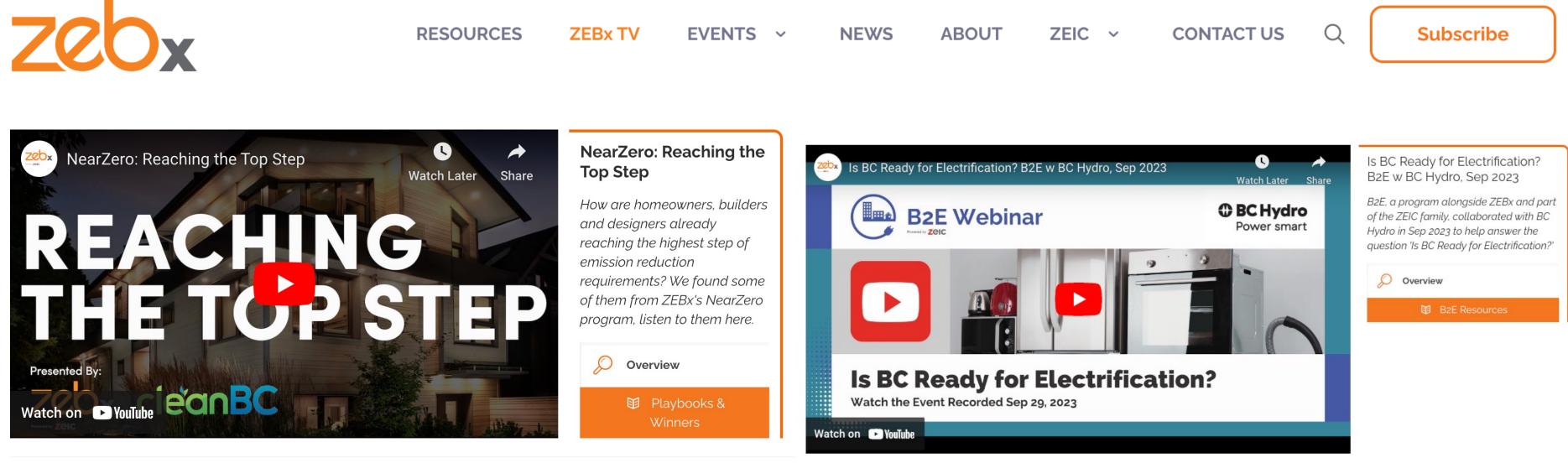
Stream 4

BC homes.

nearzero.ca

A ZEBx utility data collection initiative to determine the real emissions and energy profiles of

Decarb Lunchseries


University of Victoria's Housing and Dining Complex

Thu Jun 13, 2024, from 12- 1pm PDT Free Webinar I zebx.org

ZEBx TV EVENTS ~ NEWS

Life Cycle Assessment Process to Estimate Embodied Carbon in Buildings

From ZEBx's Net-Zero Energy-Ready Playbook Series

Overview

Read This Playbook

Powered by ZCIC MORE SOLUTIONS, LESS CARBON.

zebx

Artight

Rubblings

Planning Airtight Buildings

From ZEBx's Net-Zero Energy-Ready Playbook Series

Overview Read This Playbook

ZERO EMISSIONS BUILDING EXCHANGE

Working to rapidly accelerate the knowledge, capacity and passion for zero-emissions buildings in Vancouver and British Columbia

Industry Resources

Learn More About ZEBx

Powered by ZCIC MORE SOLUTIONS, LESS CARBON.

Events & Demonstrations Specialized Programming