Decarb Lunch Series

BC Hydro Power smart

Overheating: Will the need for cooling accelerate decarbonization?

Thu May 19, 2022, from 12- 1pm PDT Free Webinar zebx.org

> WINESS WINSSE WINSSE

ZEBx is proud to be part of the Metro Vancouver Zero Emissions Innovation Centre

Visit ZEIC.ca to find out more

We are a broad coalition working together to electrify buildings in British Columbia in order to reduce their climate impacts and reliance on fossil fuels.

clfvancouver.com

Welcome to the BC Green Building Calendar.

Here you will find all of the latest events and training related to green building subject matter, including: emissions, energy efficiency, resiliency, high-performance design, and more.

If you would like to submit an event or for more details on submission guidelines, see the bottom of this page.

Filters

February 2022

25

Friday

12:00 - 1:00pm

Webinar	Presented by: ZEBx	Sun	Mon	Tue	Wed	Thu	Fri	
Feb 17	Zebx	30 6 13	31 7 14	1 8 15	2 9 16	3 10 17	4 11 18	
Thursday 10:00am - 12:00pm	Deep Emissions Retrofit Dialogue - Ready to Roll: Simple Solutions for Going Electric	20 27	21 28	22 1	23 2	24 3	25 • 4	
		6	7	8	9	10	11	
Webinar	Presented by: ZEBx	7	To sul	omit	even	ts fo	r yoı	ır
Feb	Zab		<u> </u>	orga	anizat	tion:		

Join our community

February 2022

Fri Sat

11 18 19

25 -26

ZEBx Decarb Lunch - Be Prepared! The BC Energy Step Code Capacity Study.

b2electrification.org

Feb 15, 2022

Tell us about yourself!

Three-part anonymous poll

ZEBx Decarb Lunch

May 19, 2022 Charling Li Green Building Engineer Sustainability Group

May 17 council decisions

- 1: New buildings update to VBBL and Rezoning Policy
- 2: Benchmarking & carbon limits for existing large buildings
- 3: Requirements for existing detached homes
- 4: \$2M grant for non-market housing to accelerate heat pump adoption

Council direction

- prioritize electrification over renewable gas wherever possible in new and existing buildings
- explore options to remove gas cooking, fire places and others uses in all new residential buildings

New Part 3 buildings updates

Intake reports for energy & emissions, embodied carbon and resilient buildings

What did you tell us about yourself?

Key Takeaway

Heat pumps are a key strategy to address climate mitigation AND resilience to future climate needs

Decarb Lunch Series

BC Hydro Power smart

Overheating: Will the need for cooling accelerate decarbonization?

Thu May 19, 2022, from 12- 1pm PDT Free Webinar zebx.org

> WINESS WINSSE WINSSE

Overheating: Will the need for cooling accelerate decarbonization?

ZEBx Decarb Lunch May 19, 2022

Ralph Wells Community Energy Manager Campus and Community Planning – Sustainability and Engineering University of British Columbia

CANADA'S TOP WEATHER STORIES IN 2021

BC Floods November

Arctic blast February

Tornadoes in Quebec

BRITISH COLUMBIA HEAT DOME EVENT

RESEARCH ARTICLE | CLIMATOLOGY

f 🍠 in 🍲 % 🖾

The 2021 western North America heat wave among the most extreme events ever recorded globally

Fig. 3. Heat-Related Deaths by Age Group as % of Total, Jun 25 - Jul 1, 2021

Table 7. Heat-Related Deaths by Injury Location and Health Authority of Injury, Jun 25 – Jul 1, 2021¹

_	Interior	Fraser	Vancouver Coastal	Island	Northern	Total
Inside Residence	57	265	118	46	20	506
Outside	3	2	1	1	1	8
Public Building ²	1	1	0	0	0	2
Unknown	3	5	1	1	0	10
Total	64	273	120	48	21	526

June 27, 2021

IPCC SPECIAL REPORT GLOBAL WARMING 1.5C

Global total net CO2 emissions

Implications for Buildings in Metro Vancouver

Cooling Degree Days: Recent Past

Cooling Degree Days: 2050s

Source: PCIC for Metro Vancouver (2016)

Energy Step Code Performance Compliance

Energy Modeling

Air-Tightness Testing

No Prescriptive Energy Requirements

Energy Step Code Performance Compliance

Energy Modeling

* requires weather file

Air-Tightness Testing

No Prescriptive Energy Requirements

Energy Step Code Performance Compliance

Energy Modeling

Air-Tightness Testing

No Prescriptive Energy Requirements

- * requires weather file
- * current weather file represents past climate (CWEC 2016)

Generating "Future Climate Weather Files" For Building Energy Modelling

Malin Ek Trevor Murdock (PCIC)

- TMY Typical Meteorological Year for building modelling
- "Morphing" future daily temperature to hourly TMY

UBC SEEDS Project: Future weather files to support climate resilient building design in Vancouver. Ek et al. 2018

Designing Climate Resilient MURBs – Partnership Project

Innovative Clean Energy (ICE) Fund

Unmet Cooling Hours – New Low Rise Archetype

Building Archetype Low Rise New (No Mechanical Cooling)

Unmet Cooling Hours – Existing High-Rise Archetype

Building Archetype High Rise Existing (No Mechanical Cooling)

Cooling Energy Demand Intensity (CEDI) – New High Rise Archetype

Building Archetype High Rise New (Mechanical Cooling)

TEDI – Thermal Energy Demand Intensity (space heating) CEDI – Cooling Energy Demand Intensity (space cooling)

UBC NEW CONSTRUCTION POLICY

Requirements for Residential Buildings

Mandatory – 2050 Climate Ready Thermal Comfort Modelling

The building design should meet thermal comfort requirements for 2020s and have a design strategy to meet 2050 requirements. Passively cooled buildings must meet City of Vancouver Energy Modelling Guideline requirements for passively cooled buildings using 2020s weather files and have design strategies for meeting these requirements using 2050 weather files.

Optional – 2050 Climate Ready Energy Efficient Design

Using 2050 RCP 8.5 weather files, achieve a reduction in Cooling Energy Demand Intensity (CEDI) over a base case 2050 ready design that meets REAP E&E and CA preconditions, with passive design measures. (Credits received for 5%, 10% or 15% reduction)

Technical Guidelines for Institutional Buildings

2.3 Design Criteria of Passively Cooled Spaces

Thermal comfort modeling shall be conducted using the 2050s weather file for YVR obtained from the PCIC website (https://www.pacificclimate.org/data/weather-files). Models shall simulate indoor thermal conditions for the months of May to September inclusive.

2.4 Design Criteria of Mechanically Cooled Spaces

Active cooling systems, where required, shall be sized to prevent overheating (see section 2.2 for thermal comfort criteria) based on 31C DB / 23C WB (the expected 2.5% summer design condition in the 2050s climate) and an indoor temperature of 25° C.

RESOURCES

Designing Climate Resilient MURBS (Summary Report) https://sustain.ubc.ca/sites/default/files/Designing%20Future%20Climate_Nov%202020-small.pdf

BC Housing: BC Energy Step Code Design Guide & Supplemental https://www.bchousing.org/research-centre/library/residential-design-construction/bc-energy-stepcode-design-guide&sortType=sortByDate

PCIC Future shifted water files https://www.pacificclimate.org/data/weather-files

Future weather files to support climate resilient building design in Vancouver. Ek et al. 2018 https://www.pacificclimate.org/sites/default/files/Eketal_2018_Proceedings_22_Feb_2019.pdf

DECARB LUNCH May 19, 2022

Overheating

- Strategies
- Will the need for cooling accelerate decarbonization?

Christy Love, P.Eng., CPHD Principal, RDH Building Science

Key Solutions – from UBC Study

Results : Low Rise New Building

Climate Adaptation and Mitigation Bundles: Overheated hours for New Low Rise **Step-3**

Benefits of Passive Solar Control

2050s scenario: one bundle was analyzed for the highrise new building:

• Bundle 2: operable exterior shading + reduced SHGC

Source: UBC Designing Climate Resilient Buildings Study

 $[\]rightarrow$ Power outage (high rise new)

New Building Take-aways

- \rightarrow Consider future climate for multifamily buildings to avoid overheating
- \rightarrow Low rise buildings benefit from a combination of passive and active cooling measures
- High rise buildings that are designed with cooling systems can reduce loads and improve resiliency by incorporating passive cooling measures
- \rightarrow Passive systems = increased resiliency

Existing Buildings: Reduce the Need for Cooling

Source: UBC Designing Climate Resilient Buildings Study

Existing Building Take-aways

- Given the typically poor performance of windows in this building type, any passive measures that reduce direct solar heat gain will lead to a significant reduction of overheated hours.
 - Jow SHGC glazing
 - Exterior shading (fixed or operable)
 - Dynamic glazing
 - \rightarrow Plant trees
- Not a great idea to add cooling to a building with high SHGC/poor performing glazing.
 - \rightarrow Add shading and/or upgrade windows to limit excessive cooling energy and peak cooling loads
 - \rightarrow Enclosure thermal performance improvements (where renewals are planned)
- Consider options for simultaneously improving cooling, heating, and ventilation
 - \rightarrow Heat pumps, heat pump HRVs

Design Implications Matrix

\rightarrow Considers:

- \rightarrow Overheating
- →Energy & GHG Impacts
- →Capital & Operating Impacts
- \rightarrow Design Implications
- \rightarrow Resiliency (Passive Survivability)

General Information Mitigation			Climate Change Mitigation	ate Change itigation Capital and Operational Impacts			De	Impacts on Resilience		
M ea sure	Description .	Overheating mitigation	Energy impacts	Capital cost considerations	Cost (\$)	Maintenance & replacement	Architectural	Mechanical	Electrical	Passive survivability
Exterior shading - operable (automated)	Exterior shades with motors that minimize solar gain based on automated control strategies.	4 - Excellent	May reduce cooling load and potentially the required cooling equipment. Can be modeled according to	Increased cost with motors and controls in automated system. Similar to manually operated exterior	55+	Periodic cleaning required to maintain the design intent. Maintenance/repair s on moving parts,	Early design integration is recommended. Considerations with automated shading system options include:	Same implications as fixed exterior shading, except that optimization is automated and as such requires	Power for motors and controls. System will need to be integrated	Power outage will render motor-driven blinds inoperable. May need to prioritize failure state (e.g. 'normally closed' in case of power
Dynamic glazing	Electrochromatic coating on windows to adjust SHGC with electrical controls (either manually or automatically)	4 - Excellent	Reduced cooling load and potentially the required cooling equipment. Energy requirement to operate is minimal.	Expensive product compared to conventional glazing. Costs may reduce as the market matures.	55	Uncertain life-time durability and maintainance requirements given relative newness of product.	Dynamic glazing can appear dark from exterior and blue tinted from interior.	Must consider how the system responds to interior/exterior temperatures, heating or cooling system	Dynamic glazing units require additional electrical panel within unit for controls and	Power outage will controls inoperable (or make part of emergency power system if there is one). May need to prioritize failure state (e.g. fully
Full mechanical cooling via radiant distribution	Providing mechanical cooling via radiant system (e.g. ceiling, wall panels) to meet the full design cooling load.	4 - Excellent	Will increase cooling energy consumption over a case with no mechanical cooling.	Will add capital cost over a building with no cooling. If combined with passive measures, the sizing of the cooling system may	555	Central equipment and system maintenance (whether chiller or heat pump); adds complexity to building systems	The distribution of the system to be considered through the design; e.g. if the radiant system is in the ceiling, it	Radiant cooling, with thermal mass based systems such as radiant floors/ceilings, is not as responsive	Electrical requirements for central equipment and controls.	Non-functional during power outage unless on emergency power/generator
Full mechanical cooling via air distribution	Providing mechanical cooling via air delivery systems (e.g. mini-split heat pumps, or centralized air handling or heat pump units with fan driven terminal units)	4 - Excellent	Will increase cooling energy consumption over a case with no mechanical cooling.	Will add capital cost over a building with no cooling. If combined with passive measures, the sizing of the cooling system may	555	Central equipment and system maintenance in the case of centralized system; adds complexity to building systems	Location of terminal units wihtin the space to be coordianted with disciplines. Terminal units	Air cooling is typically how space cooling is provided, as the cooling coil can control both space air	Electrical requirements for equipment and controls.	Non-functional during power outage unless on emergency power/generator
Passive fixed exterior shading is bundled with full mechanical cooling.	Fixed exterior shading is bundled with full mechanical cooling, such as through a radiant system or a air delivery system. This reflects the realistic scenario of	4 - Excellent	Less energy consumption than full mechanical cooling without passive measures.	Reducing cooling demand via passive measures can enable downsizing of mechanical cooling equipment, resulting in	555	(see full mechanical cooling & passive solar shading row items)	(see fixed shading row)	exterior shading helps to offset the cooling load of the mechanical equipment and reduce the cooling energy	(see full mechanical cooling row)	The addition of passive demand reduction (solar shading) to mechanical cooling helps the passive survivability of having

Future Climate Design for Multi-Family Buildings Study:

https://planning.ubc.ca/sites/default/files/2021-11/R-

21007 001%202021%2009%2027%20UBC%20Climate%20Resilience%20Final%20Report ISSUED.pdf

Gener	al Information	Overheating Mitigation	Climate Change Mitigation	Capital and Operational Impacts			Des	Impacts on Resilience		
M easure	Description	Overheating mitigation	Energy impacts	Capital cost considerations	Cost (\$)	Maintenance & replacement	Architectural	Mechanical	Electrical	Passive survivability
Exterior shading - operable (automated)	Exterior shades with motors that minimize solar gain based on automated control strategies.	4 - Excellent	May reduce cooling load and potentially the required cooling equipment. Can be modeled according to	Increased cost with motors and controls in automated system. Similar to manually operated exterior	\$\$+	Periodic cleaning required to maintain the design intent. Maintenance/repair s on moving parts,	Early design integration is recommended. Considerations with automated shading system options include:	Same implications as fixed exterior shading, except that optimization is automated and as such requires	Power for motors and controls. System will need to be integrated	Power outage will render motor-driven blinds inoperable. May need to prioritize failure state (e.g. 'normally closed' in case of power
Dynamic glazing	Electrochromatic coating on windows to adjust SHGC with electrical controls (either manually or automatically)	4 - Excellent	Reduced cooling load and potentially the required cooling equipment. Energy requirement to operate is minimal.	Expensive product compared to conventional glazing. Costs may reduce as the market matures.	\$\$	Uncertain life-time durability and maintainance requirements given relative newness of product.	Dynamic glazing can appear dark from exterior and blue tinted from interior.	Must consider how the system responds to interior/exterior temperatures, heating or cooling system	Dynamic glazing units require additional electrical panel within unit for controls and	Power outage will controls inoperable (or make part of emergency power system if there is one) May need to prioritize failure state (e.g. 'fully
Full mechanical cooling via radiant distribution	Providing mechanical cooling via radiant system (e.g. ceiling, wall panels) to meet the full design cooling load.	4 - Excellent	Will increase cooling energy consumption over a case with no mechanical cooling.	Will add capital cost over a building with no cooling. If combined with passive measures, the sizing of the cooling system may	\$\$\$	Central equipment and system maintenance (whether chiller or heat pump); adds complexity to building systems	The distribution of the system to be considered through the design; e.g. if the radiant system is in the ceiling, it	Radiant cooling, with thermal mass based systems such as radiant floors/ceilings, is not as responsive	Electrical requirements for central equipment and controls.	Non-functional during power outage unless on emergency power/generator
Full mechanical cooling via air distribution	Providing mechanical cooling via air delivery systems (e.g. mini-split heat pumps, or centralized air handling or heat pump units with fan driven terminal units)	4 - Excellent	Will increase cooling energy consumption over a case with no mechanical cooling.	Will add capital cost over a building with no cooling. If combined with passive measures, the sizing of the cooling system may	\$\$\$	Central equipment and system maintenance in the case of centralized system; adds complexity to building systems	Location of terminal units wihtin the space to be coordianted with disciplines. Terminal units	Air cooling is typically how space cooling is provided, as the cooling coil can control both space air	Electrical requirements for equipment and controls.	Non-functional during power outage unless on emergency power/generator
Passive fixed exterior shading is bundled with full mechanical cooling.	Fixed exterior shading is bundled with full mechanical cooling, such as through a radiant system or a air delivery system. This reflects the realistic scenario of	4 - Excellent	Less energy consumption than full mechanical cooling without passive measures.	Reducing cooling demand via passive measures can enable downsizing of mechanical cooling equipment, resulting in	\$\$\$	(see full mechanical cooling & passive solar shading row items)	(see fixed shading row)	exterior shading helps to offset the cooling load of the mechanical equipment and reduce the cooling energy	(see full mechanical cooling row)	The addition of passive demand reduction (solar shading) to mechanical cooling helps the passive survivability of having

General Information Mitigation			Climate Change Mitigation	Capital a	Capital and Operational Impacts			Design Implications			
M easure	Description	Overheating mitigation	Energy impacts	Capital cost considerations	Cost (\$)	Maintenance & replacement	Architectural	M echanical	Electrical	Passive survivability	
Exterior shading - operable (automated)	Exterior shades with motors that minimize solar gain based on automated control strategies.	4 - Excellent	May reduce cooling load and potentially the required cooling equipment. Can be modeled according to	Increased cost with motors and controls in automated system. Similar to manually operated exterior	\$\$+	Periodic cleaning required to maintain the design intent. Maintenance/repair s on moving parts,	Early design integration is recommended. Considerations with automated shading system options include:	Same implications as fixed exterior shading, except that optimization is automated and as such requires	Power for motors and controls. System will need to be integrated	Power outage will render motor-driven blinds inoperable. May need to prioritize failure state (e.g. 'normally closed' in case of power	
Dynamic glazing	Electrochromatic coating on windows to adjust SHGC with electrical controls (either manually or automatically)	4 - Excellent	Reduced cooling load and potentially the required cooling equipment. Energy requirement to operate is minimal.	Expensive product compared to conventional glazing. Costs may reduce as the market matures.	\$\$	Uncertain life-time durability and maintainance requirements given relative newness of product.	Dynamic glazing can appear dark from exterior and blue tinted from interior.	M ust consider how the system responds to interior/exterior temperatures, heating or cooling system	Dynamic glazing units require additional electrical panel within unit for controls and		
Full mechanical cooling via radiant distribution	Providing mechanical cooling via radiant system (e.g. ceiling, wall panels) to meet the full design cooling load.	4 - Excellent	Will increase cooling energy consumption over a case with no mechanical cooling.	Will add capital cost over a building with no cooling. If combined with passive measures, the sizing of the cooling system may	\$\$\$	Central equipment and system maintenance (whether chiller or heat pump); adds complexity to building systems	The distribution of the system to be considered through the design; e.g. if the radiant system is in the ceiling, it	Radiant cooling, with thermal mass based systems such as radiant floors/ceilings, is not as responsive	felectrical requirements for central equipment and controls.		
Full mechanical cooling via air distribution	Providing mechanical cooling via air delivery systems (e.g. mini-split heat pumps, or centralized air handling or heat pump units with fan driven terminal units)	4 - Excellent	Will increase cooling energy consumption over a case with no mechanical cooling.	Will add capital cost over a building with no cooling. If combined with passive measures, the sizing of the cooling system may	\$\$\$	Central equipment and system maintenance in the case of centralized system; adds complexity to building systems	Location of terminal units wihtin the space to be coordianted with disciplines. Terminal units	Air cooling is typically how space cooling is provided, as the cooling coil can control both space air	Electrical requirements for equipment and controls.	Non-functional during power outage unless on emergency power/generator	
Passive fixed exterior shading is bundled with full mechanical cooling.	Fixed exterior shading is bundled with full mechanical cooling, such as through a radiant system or a air delivery system. This reflects the realistic scenario of	4 - Excellent	Less energy consumption than full mechanical cooling without passive measures.	Reducing cooling demand via passive measures can enable downsizing of mechanical cooling equipment, resulting in	555	(see full mechanical cooling & passive solar shading row items)	(see fixed shading row)	exterior shading helps to offset the cooling load of the mechanical equipment and reduce the cooling energy	(see full mechanical cooling row)	The addition of passive demand reduction (solar shading) to mechanical cooling helps the passive survivability of having	

Overheating General Information Mitigation Mit			Climate Change Mitigation	limate Change Mitigation Capital and Operational Impacts				Design Implications			
M ea sure	Description	Overheating mitigation	Energy impacts	Capital cost considerations	Cost (\$)	Maintenance & replacement	Architectural	M echanical	Electrical	Passive survivability	
Exterior shading - operable (automated)	Exterior shades with motors that minimize solar gain based on automated control strategies.	4 - Excellent	May reduce cooling load and potentially the required cooling equipment. Can be modeled according to	Increased cost with motors and controls in automated system. Similar to manually operated exterior	\$\$+	Periodic cleaning required to maintain the design intent. Maintenance/repair s on moving parts,	Early design integration is recommended. Considerations with automated shading system options include:	Same implications as fixed exterior shading, except that optimization is automated and as such requires	Power for motors and controls. System will need to be integrated	Power outage will render motor-driven blinds inoperable. May need to prioritize failure state (e.g. 'normally closed' in case of power	
Dynamic glazing	Electrochromatic coating on windows to adjust SHGC with electrical controls (either manually or automatically)	4 - Excellent	Reduced cooling load and potentially the required cooling equipment. Energy requirement to operate is minimal.	Expensive product compared to conventional glazing. Costs may reduce as the market matures.	22	Uncertain life-time durability and maintainance requirements given relative newness of product.	Dynamic glazing can appear dark from exterior and blue tinted from interior.	M ust consider how the system responds to interior/exterior temperatures, heating or cooling system	Dynamic glazing units require additional electrical panel within unit for controls and	Power outage will controls inoperable (or make part of emergency power system if there is one) May need to prioritize failure state (e.g. 'fully	
Full mechanical cooling via radiant distribution	Providing mechanical cooling via radiant system (e.g. ceiling, wall panels) to meet the full design cooling load.	4 - Excellent	Will increase cooling energy consumption over a case with no mechanical cooling.	Will add capital cost over a building with no cooling. If combined with passive measures, the sizing of the cooling system may	\$\$\$	Central equipment and system maintenance (whether chiller or heat pump); adds complexity to building systems	The distribution of the system to be considered through the design; e.g. if the radiant system is in the ceiling, it	Radiant cooling, with thermal mass based systems such as radiant floors/ceilings, is not as responsive	felectrical requirements for central equipment and controls.		
Full mechanical cooling via air distribution	Providing mechanical cooling via air delivery systems (e.g. mini-split heat pumps, or centralized air handling or heat pump units with fan driven terminal units)	4 - Excellent		Will add capital cost over a building with no cooling. If combined with passive measures, the sizing of the cooling system may	\$\$\$	Central equipment and system maintenance in the case of centralized system; adds complexity to building systems	Location of terminal units wihtin the space to be coordianted with disciplines. Terminal units	Air cooling is typically how space cooling is provided, as the cooling coil can control both space air	Electrical requirements for equipment and controls.		
Passive fixed exterior shading is bundled with full mechanical cooling.	Fixed exterior shading is bundled with full mechanical cooling, such as through a radiant system or a air delivery system. This reflects the realistic scenario of	4 - Excellent	Less energy consumption than full mechanical cooling without passive measures.	Reducing cooling demand via passive measures can enable downsizing of mechanical cooling equipment, resulting in	\$\$\$	(see full mechanical cooling & passive solar shading row items)	(see fixed shading row)	exterior shading helps to offset the cooling load of the mechanical equipment and reduce the cooling energy	(see full mechanical cooling row)	The addition of passive demand reduction (solar shading) to mechanical cooling helps the passive survivability of having	

Can we just add heat pumps?

Can we just add heat pumps? GHGI – great!

Can we just add heat pumps? TEUI - pretty good!

Can we just add heat pumps? Peak loads - not good...

What about heat pumps and better windows? GHGI – even better!

What about heat pumps and better windows? TEUI – even better!

What about heat pumps and better windows? Peak demand – better...

TAKEAWAYS: Addressing Overheating

Design + Policy

- High eff heat pumps = good as a standalone solution if you are also offsetting less efficient heating
- Look for opportunities to incorporate passive solar management and demand reduction
- Considering future climate in today's designs (the future is now)
- \rightarrow CEDI coming soon to a policy near you?
- ightarrow Must consider multiple objectives

UBC NEW CONSTRUCTION POLICY

Requirements for Residential Buildings

Mandatory – 2050 Climate Ready Thermal Comfort Modelling

The building design should meet thermal comfort requirements for 2020s and have a design strategy to meet 2050 requirements. Passively cooled buildings must meet City of Vancouver Energy Modelling Guideline requirements for passively cooled buildings using 2020s weather files and have design strategies for meeting these requirements using 2050 weather files.

Optional – 2050 Climate Ready Energy Efficient Design

Using 2050 RCP 8.5 weather files, achieve a reduction in Cooling Energy Demand Intensity (CEDI) over a base case 2050 ready design that meets REAP E&E and CA preconditions, with passive design measures. (Credits received for 5%, 10% or 15% reduction)

Technical Guidelines for Institutional Buildings

2.3 Design Criteria of Passively Cooled Spaces

Thermal comfort modeling shall be conducted using the 2050s weather file for YVR obtained from the PCIC website (https://www.pacificclimate.org/data/weather-files). Models shall simulate indoor thermal conditions for the months of May to September inclusive.

2.4 Design Criteria of Mechanically Cooled Spaces

Active cooling systems, where required, shall be sized to prevent overheating (see section 2.2 for thermal comfort criteria) based on 31C DB / 23C WB (the expected 2.5% summer design condition in the 2050s climate) and an indoor temperature of 25° C.

Discussion + Questions

clove@rdh.com

Learn more at rdh.com

RDH Building Science

