
Mitsubishi Electric Sales Canada Air Source Heat Pump Water Heater

QAHV-N136TAU-HPB

Capacity	136,480 Btu/h (40 kW)
Heating COP*1	4.11
Outlet water temperature range	115-176°F(46-80°C)
Heat source outdoor temperature range	-13–109°F(-25–43°C)
Refrigerant	CO ₂ (R744)
External dimension (H x W x D)	70 x 48-1/16 x 29-15/16 in (1,777 x 1,220 x 760 mm)
Weight	895 lbs (406 kg)

^{*1} Under normal heating conditions at the outdoor temperature of 80.6°FDB/71.2°FWB (27.0°CDB/21.8°CWB), the outlet water temperature of 120°F (48.9°C), and the inlet water temperature of 70°F (21.1°C).

CO₂ – clean, green, natural refrigerant

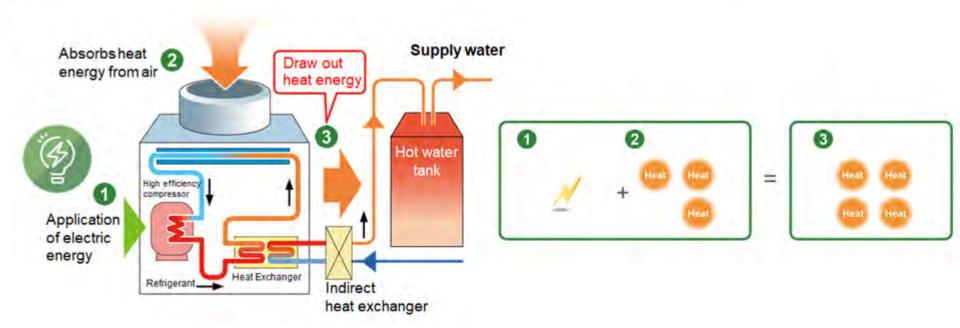
Decarbonize your water without compromise.

- QAHV adopts CO₂ (R744) as a refrigerant, which does not destroy the ozone layer (ODP=0)
- By utilizing a natural CO₂ refrigerant that's environmentally friendly, QAHV has a GWP of 1. This helps contribute to the reduction of CO₂ emissions.

Typical Heater Type

		Boiler	-	Electric water heaters		Heat pump			
	Feed water Heat exchanger Steam Supply water Water Heat conduction surface Combustion chamber		Supply water Heater Heater Feed water			Absorbs heat energy from air Praw out heat exchanged from the exchang			
Mechanism	Ņ	Makes hot water by burning gas and oil		Makes hot heater by directly heating the supply water in the hot water tank by energizing the heater		Makes hot water by using the heat absorbed from the atmosphere			
Safety	**	Care must be taken for fire and exhaust.	***	Safe because only electricity is used and no fire is used.	***	Safe because only electricity is used and no fire is used.			
Energy efficient	**	Frequent starting and stopping of boilers due to fluctuations in the load result in an increase in fuel consumption.	**	Uses a heater to heat, so the energy saving performance is not good.	***	Generates hot water using heat pump method, so about 3 to 4 times the input power can be obtained.			
Maintenance	**	Since combustion is involved, maintenance and inspection and assignment of managers are required.	***	Easy maintenance because the system uses electricity. The system can be monitored and operated remotely.	***	Easy maintenance because the system uses electricity. The system can be monitored and operated remotely.			
Equipment cost	**	Capacity of electrical equipment is small, and power receiving and transforming facility size can be reduced.	***	Easy installation and reduced initial cost.	**	Requires a hot water storage tank and a large capacity electrical facility.			
CO ₂ emissions	*	CO2 and NOx emissions are high due to the use of gases and oils.	**	Although there is no emission of CO2 or NOx at the installation site, it is inefficient.	***	Heat pumps enable efficient operation, reducing emissions of CO2 and NOx.			

QAHV-N136TAU-HPB


- Multiple module combination (Up to 16 Units)
- High capacity per module
- Utilizes Natural refrigerant (CO₂)
- High efficiency (Achieved COP 4.11*1)
- Supply high temperature hot water (Up to 176°F/80°C)
- Operable even at low outdoor temp of -13°F/-25°C*2
- BMS connection (Modbus)

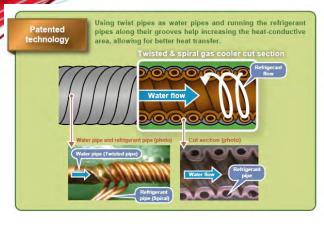
QAHV Hot Water Heat Pump

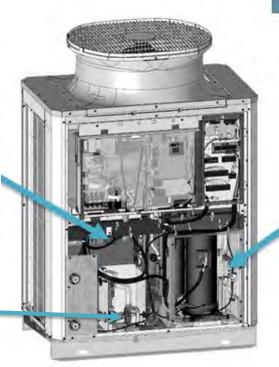
High efficiency up to 4.11 COP

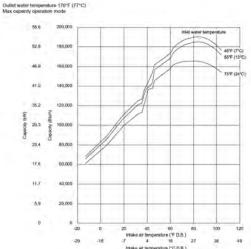
Utilizes CO₂ refrigerant with a GWP of 1

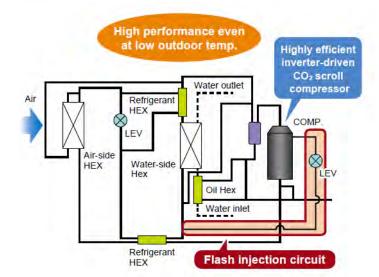
Uses a unique twisted and spiral gas cooler to enhance energy efficiency

Operates down to -25°C.

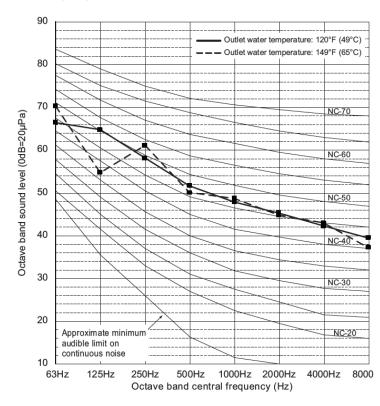



Super low noise levels for superior performance


Compressor



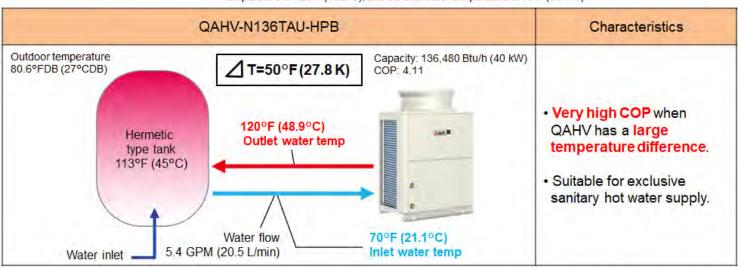
Built-in Pump



Sound Pressure Level: 56 dB

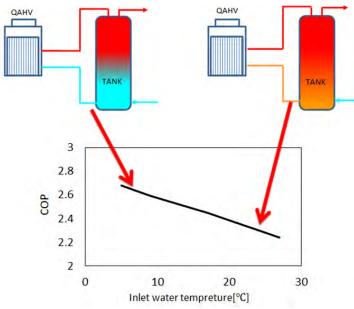
Operation mode: Energy saving operation 1 mode

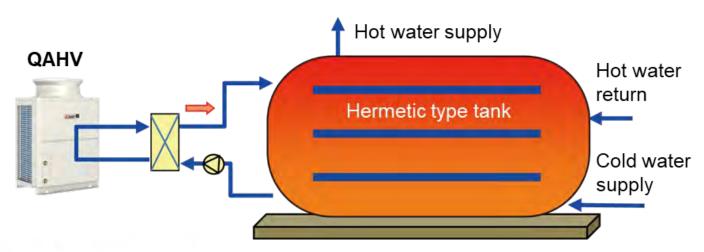
Outdoor temperature: 80.6°F (27°C)



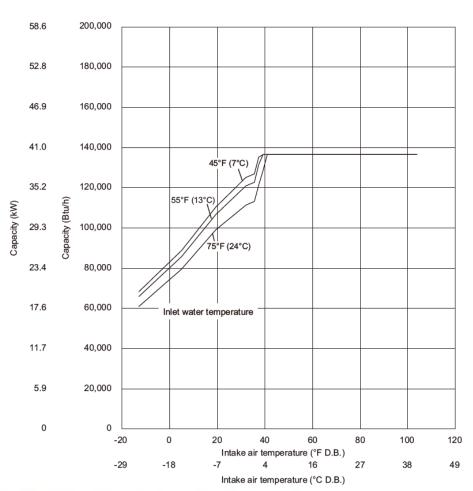
Capacity	136,480 Btu/h (40 kW)				
Heating COP*1	4.11				
Outlet water temperature range	115-176°F(46-80°C)				
Heat source outdoor temperature range	-13–109°F(-25–43°C)				
Refrigerant	CO ₂ (R744)				
External dimension (H x W x D)	70 x 48-1/16 x 29-15/16 in (1,777 x 1,220 x 760 mm)				
Weight	895 lbs (406 kg)				

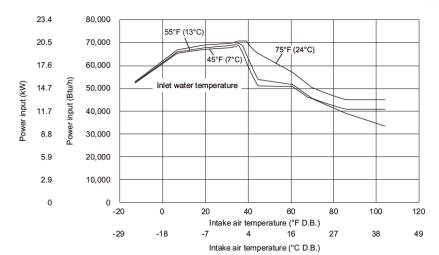
^{*1} Under normal heating conditions at the outdoor temperature of 80.6°FDB/71.2°FWB (27.0°CDB/21.8°CWB), the outlet water temperature of 120°F (48.9°C), and the inlet water temperature of 70°F (21.1°C).




^{*} Make sure that the water entering the QAHV meets the water-quality standards. If the water-quality standards are not met, use an indirect heat exchange method.

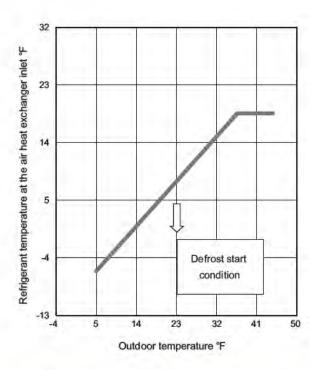
Stratification is IMPORTANT!





At outdoor temperature 36°F (2°C) or higher, this mode operates consistently at 136,480 Btu/h (40 kW).

Outlet water temperature 170°F (77°C) Energy saving operation 1 mode


-4- Defrost start/end conditions

Defrost start conditions

Defrost begins when conditions 1) through 3) listed below are all met.

- Refrigerant temperature at the air heat exchanger inlet is at or below the value determined in relation to the outdoor temperature(*2).
- Cumulative compressor operation time has reached 35 minutes since the completion of the last defrost operation.
- 3) Cumulative compressor operation time has reached 35 minutes since the operation-ON signal was sent. Or the outdoor temperature is -15°C (5°F) or below and the compressor shell bottom SH temperature is at or below the specified temperature.

Defrost start conditions at temperatures below -15°C (5°F) 1.5 MPa (217 psi) ≤ Low pressure: Shell bottom SH temperature < 10 °C (18°F) 1.4 MPa (203 psi) ≤ Low pressure < 1.5 MPa (217 psi): Shell bottom SH temperature < 12°C (21.6°F) Low pressure < 1.4 MPa (203 psi): Shell bottom SH temperature < 20°C (36°F)

Defrost end conditions

Defrost ends when any of the conditions 1) through 4) listed below is met.

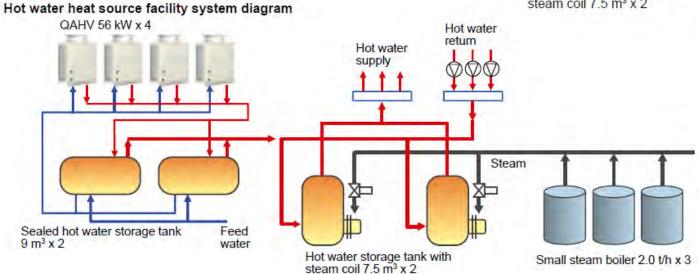
- Maximum defrost time (15 minimum) has been reached. Maximum defrost time is 20% of the cumulative compressor
 operation time from the last defrost or from the time operation-ON signal was sent.
- Three minutes have elapsed since the refrigerant temperature at the air heat exchanger outlet reached 4°C (39.2°F) or above.
- Low pressure has reached 8.5 MPa (1230 psi) or above.
- High pressure has reached 12.0 MPa (2030 psi) or above at the frequency of 30 Hz.

P

M

Hospital

- · QAHV (sealed hot water storage tank)
- + steam boiler (sealed hot water storage tank equipped with heat exchanger)
 Total floor area: 33,702 m²


Building overview: South building 8 stories above ground, North building 7 stories above ground

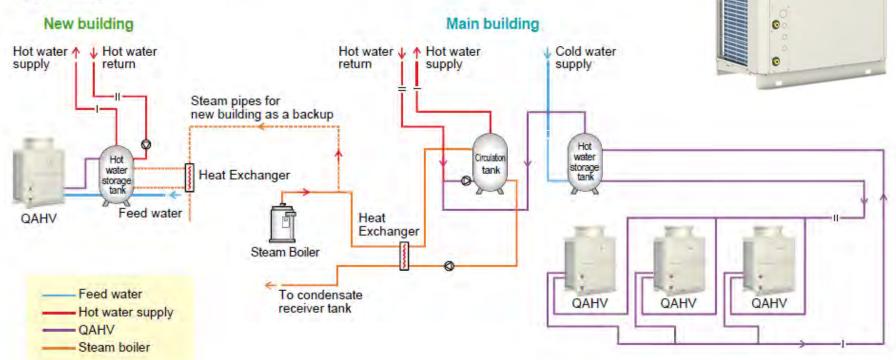
Facility overview No. of medical departments: 23; No. of beds: 527 Facility updated in 2009

Hot water heat source facility

Before update: Large steam boiler After update: QAHV 56 kW x 4

- + sealed hot water storage tank 9 m³ x 2 Small steam boiler 2.0 t/h x 3
- + sealed hot water storage tank with the steam coil 7.5 m³ x 2

Source: Mitsubishi MEES17K020

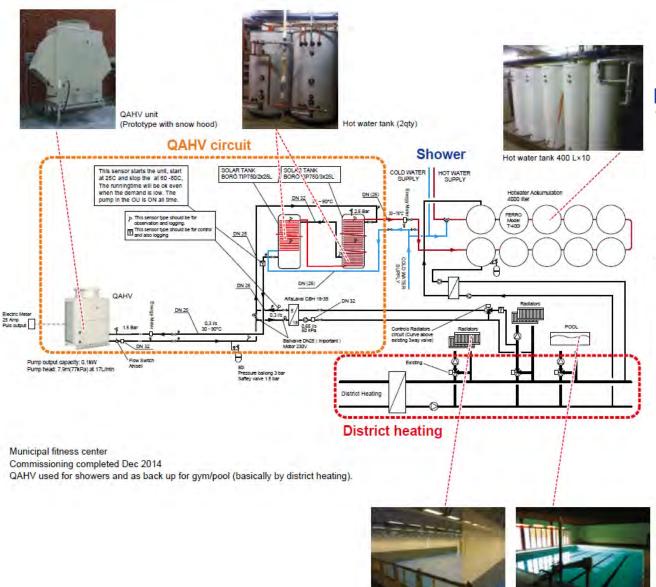

QAHV + Steam boiler

Facility updated in 2015

Heat source equipment: QAHV 40 kW x 4
Sealed hot water storage tank: 8.0 T x 2

Sealed hot water storage tank: 4.0 T x 1

System Diagram



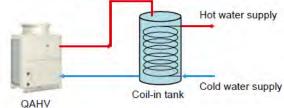
CO₂

refrigerant

Amer

• QAHV + Sealed hot water storage tank with coil

Schedule: Dec 2014 started


Usage QAHV to be used for gym, sanitary, hot water

usage (shower)

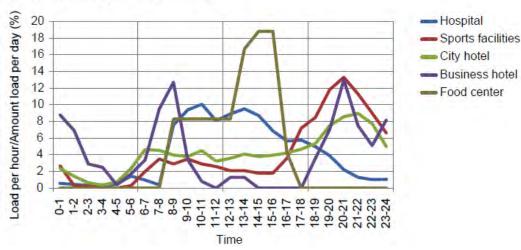
System: QAHV 56 kw × 1 + Hot water tank 400 L × 10

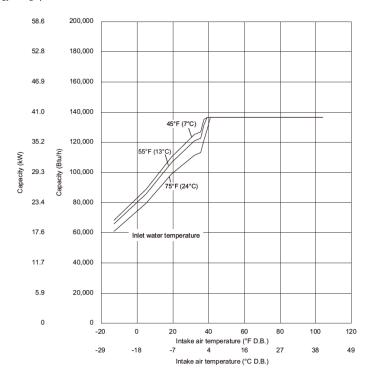
Sealed hot water storage tank with coil × 2

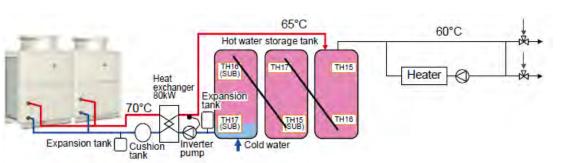
Coil-in tank Heating System

Source: Mitsubishi MEES17K020

Calculate Hot Water Load

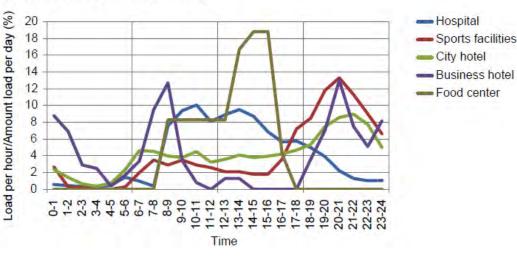

- ASHRAE Applications Service Water Heating
 - Estimate Loads based on occupancy and loads
- ASPE
 - Domestic Water Heating Design Manual
- Various Sizing Calculator
- MESCA recommend one or combination of following
 - Review existing buildings with similar size and occupancy
 - Tank size can be based on Peak Load for various hours
 - Run the QAHV for longer period of time




Air Source Heat Pump Hot Water Heater

Outlet water temperature 170°F (77°C) Energy saving operation 1 mode

- **Operation Time**
- Large Storage Tank
- Minimum Operating Temperature



Source: Mitsubishi MEES17K020

Hot Water Load

Hot water load by time (Example)

▶ Chart Amount of hot water for design Amount of hot water (HW) at 60°C

150-300

Hot water temperature 60°C Feed water temperature 5°C

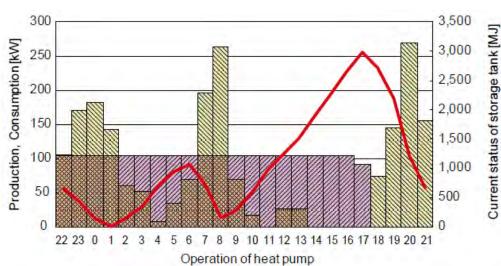
L/household

	Amount	of HW/day	111/2/17/20/20/20	unt of HW/h (A)	(A)	
Office	7-10	L/person	1.5-2.5	L/person	2h	
Hotel	150-250	L/person	20-40	L/person	2h	
Hospital	2-4	L/m ²	0.4-0.8	L/m ²	1h	
	100-200	L/bed	20-40	L/bed	1h	
Restaurant	40-80	L/m ²	10-20	L/m ²	2h	
Restaurant/Cafe	20-30	L/m ²	5-8	L/m²	2h	

L/household

Hot water temperature 60°C
Feed water temperature 10°C
Mixing temperature 42°C

50-100


Max. amount of HW/h Continuous time of Amount of HW/day (A) Office 6.7-9.5 L/person 1.4-2.4 L/person 2h Hotel 143-238 19-38 L/person L/person 2h 0.4-0.8 Hospital 1.9-3.8 L/m² L/m² 1h 95-190 19-38 1h L/bed L/bed 9.5-19.0 Restaurant 38-76 L/m² L/m² 2h Restaurant/Cafe L/m² 4.8-7.6 L/m 2h Apartment 143-285 L/household 48-95 L/household

Note:

Apartment

Amount of hot water is shown both way, in case of converted to 60°C, and in case of mixed temperature water. So you need to confirm by which temperature the amount of (hot) water is required.

Business Hotel

▶ Hot water supply load characteristics

Amount of hot water (HW) at 60°C

Maximum amount of hot water supply per hour	3,822	L/h (60°C hot water)
Maximum heat load per hour	269	kW (It expected to heat dissipation by 10%)
Maximum load continuous time	1.0	h
Amount of hot water supply per day	29,400	L/day (60°C hot water)
Heat Load per day	2,068	kWh/day (It expected to heat dissipation by 10%)
Feed water temperature: 5°C		1 kWh = 3.6 M

Feed water temperature: 5°C Hot water temperature: 60°C

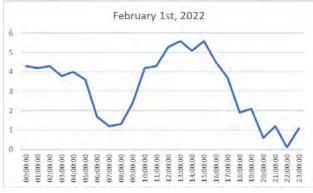
Equipment selection

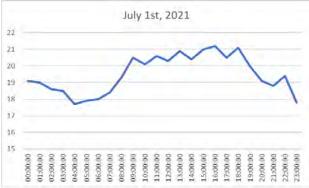
			Combustion boiler	Hot water heat pump	
Heat source equipment		kW	350	104 *1	
Hot water tank	Heat storage	MJ	16	2,975	
	Net volume	L	3,822	12,922	
	Nominal volume	L	5,460	18,460	

Validity capacity of hot water tank: 70 %

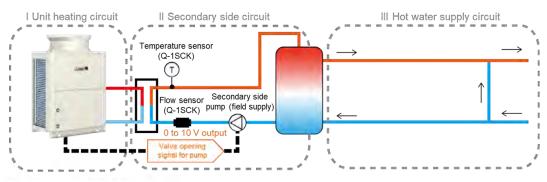
Heat pump unit operating time per day: 20 h/day

*1. Capacity of heat pump unit 104 kW=2.068 kWh/20 h





Source: Mitsubishi MEES17K020


Air Source Heat Pump Hot Water Heater

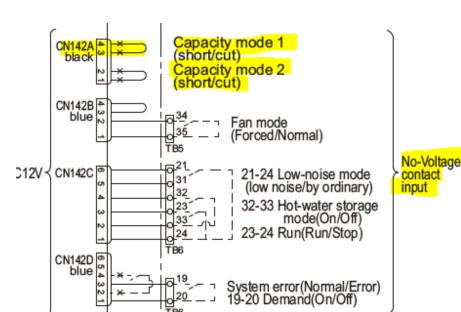
Source Data: Historical Data - Climate - Environment and Climate Change Canada (weather.gc.ca)

Operation modes

Maximum capacity operation

Operates at the maximum compressor frequency, regardless of the outdoor temperature. This mode is suitable when hot water needs to be generated quickly at the maximum capacity.

Energy saving operation 1 (Factory setting)

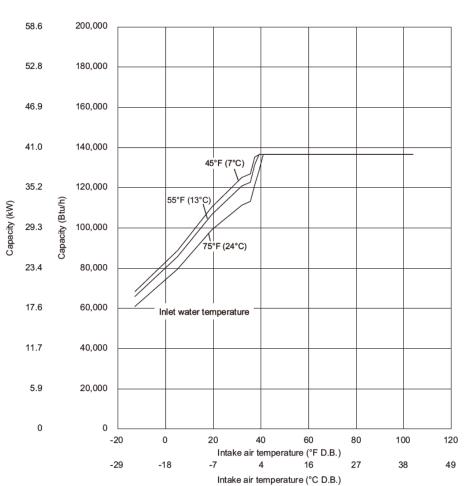

At outdoor temperature 36°F (2°C) or higher, this mode operates consistently at 136,480 Btu/h (40 kW). This mode is suitable for keeping the power consumption down.

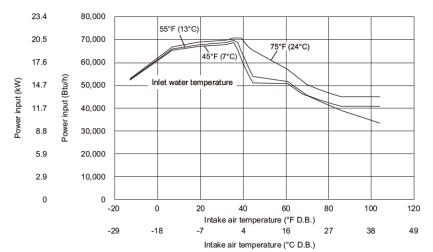
Energy saving operation 2

This mode operates with the maximum heating capacity of 176,000 Btu/h (50 kW). With reference to 136,480 Btu/h (40 kW) operation, when inlet water temperature lowers, the capacity is increased up to 176,000 Btu/h (50 kW) to maintain the amount of outlet hot water.

Capacity mode table

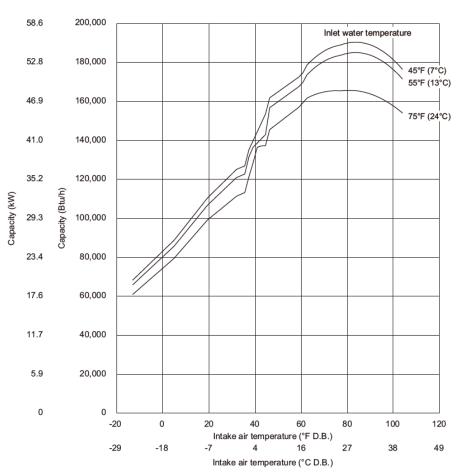
mode	input		
Max capacity operation	Capacity mode 1 cut		
Energy saving operation 1 (factory setting)	Capacity mode 1,2 short □		
Energy saving operation 2	Capacity mode 1「short」 Capacity mode 2「cut」		

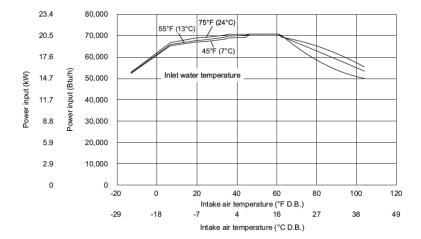




At outdoor temperature 36°F (2°C) or higher, this mode operates consistently at 136,480 Btu/h (40 kW). This mode is suitable for keeping the power consumption down.

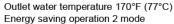
Outlet water temperature 170°F (77°C) Energy saving operation 1 mode

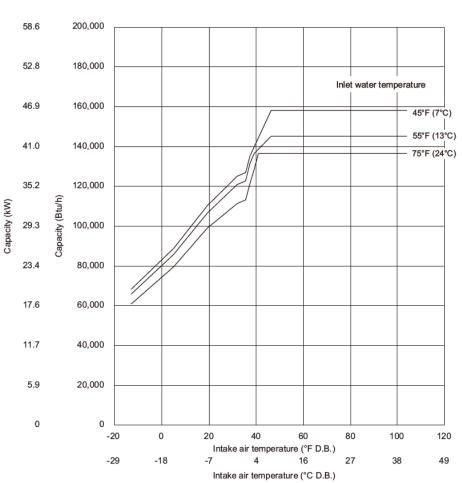


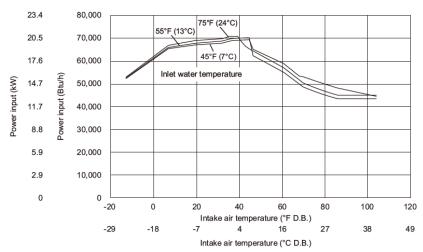


Operates at the maximum compressor frequency, regardless of the outdoor temperature. This mode is suitable when hot water needs to be generated quickly at the maximum capacity.

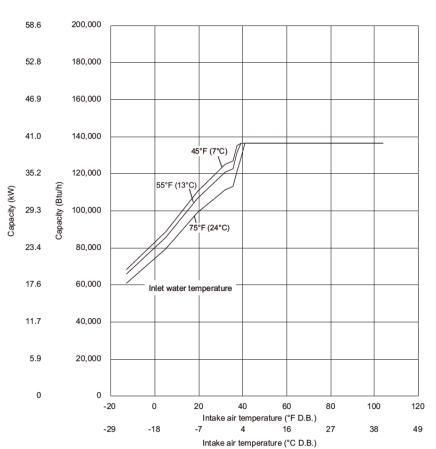
Outlet water temperature 170°F (77°C) Max capacity operation mode

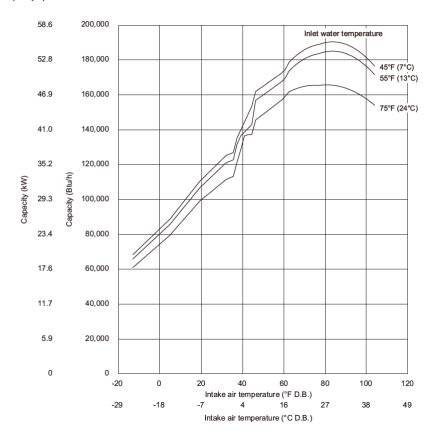






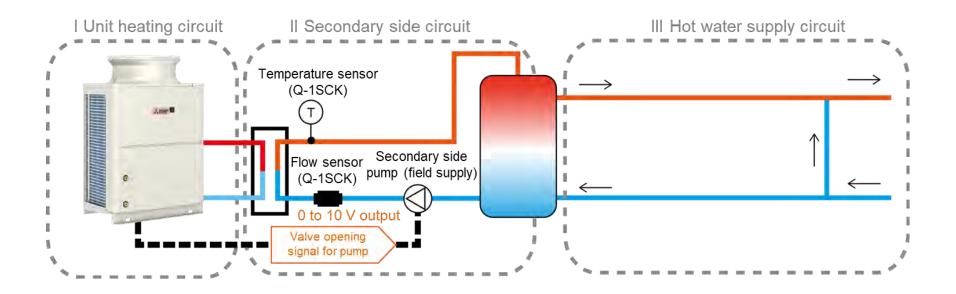
This mode operates with the maximum heating capacity of 176,000 Btu/h (50 kW). With reference to 136,480 Btu/h (40 kW) operation, when inlet water temperature lowers, the capacity is increased up to 176,000 Btu/h (50 kW) to maintain the amount of outlet hot water.

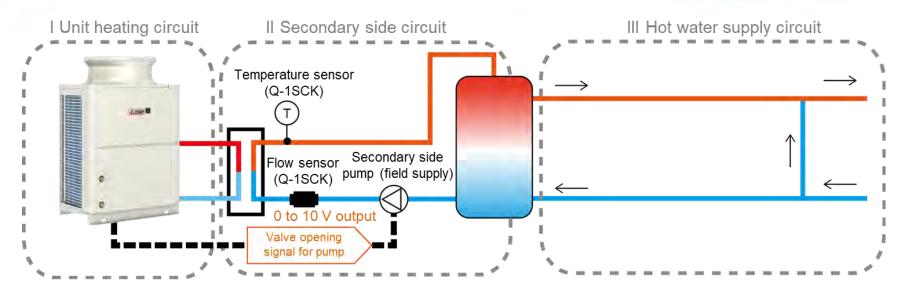


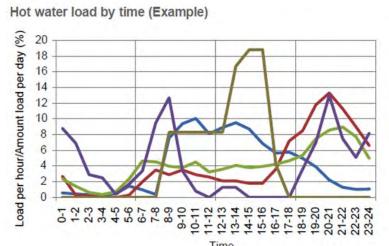


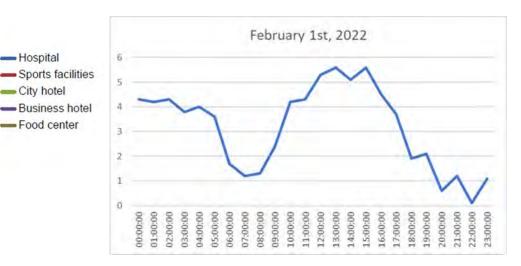
Mode Selection based on Application

Outlet water temperature 170°F (77°C) Energy saving operation 1 mode


Outlet water temperature 170°F (77°C) Max capacity operation mode


Sample Configuration

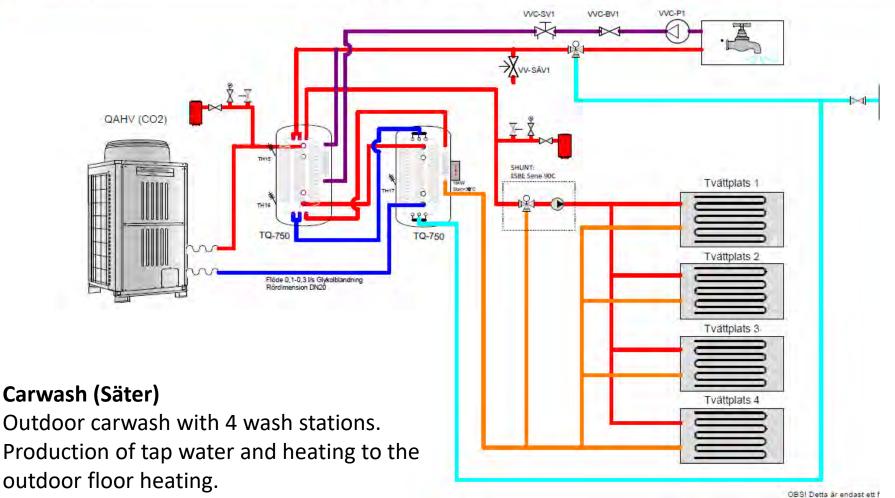

Sample Configuration



Hospital

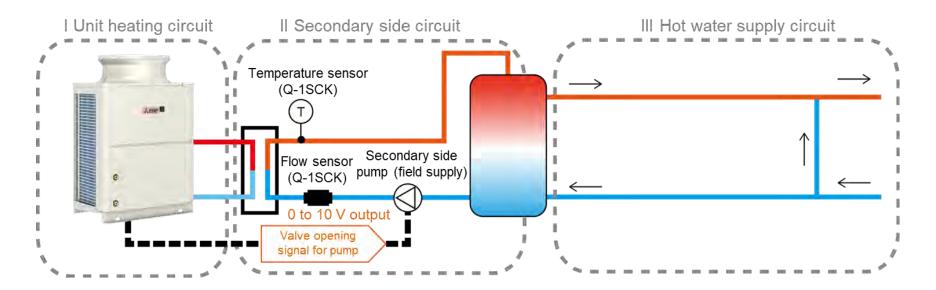
- City hotel

- Food center

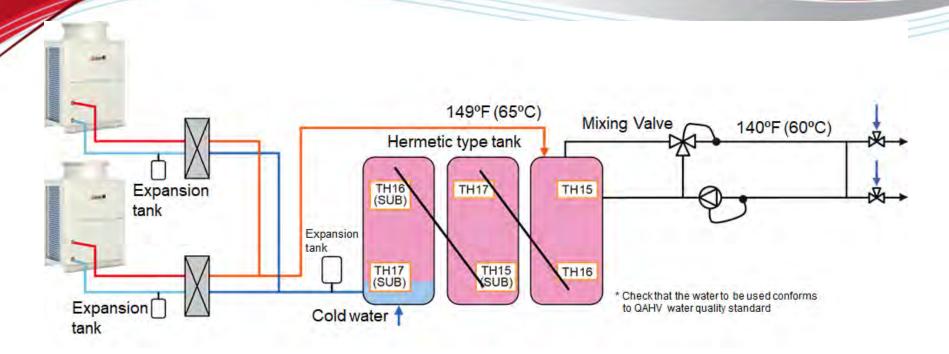


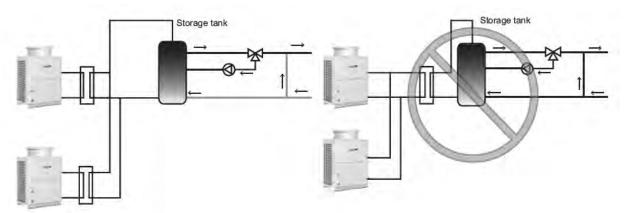
Source Data: Historical Data - Climate - Environment and Climate Change Canada (weather.gc.ca)

Biltvätt Säter/QAHV

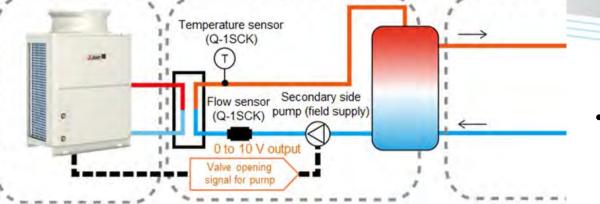


anpassas efter rådande fö Vid Motsridiga uppgifter a hänvisas till fabriksdökum Dimensionering av pumpa


Single Unit



 Minimum total amount of retained water on the QAHV side is 10.6 gal (40 L).



 Minimum total amount of retained water on the QAHV side is 10.6 gal (40 L).

4-2-3. Selection criteria for heat exchanger

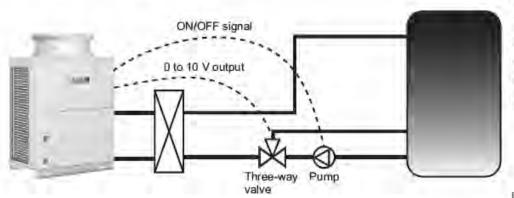
Step 1 Determination of prerequisites for selection

- 1. Heat exchanger capacity 40000 W (136000 BTU/h)
- 2. Estimation of outlet hot water and inlet water temperatures

As a guide, select a heat exchanger of which the temperature difference between the high temperature section and the low temperature section will be 5°C (9°F) or below.

- 2-1. Outlet hot water temperature (when secondary side outlet hot water temperature is set to 65°C (149°F) (setting at the time of shipment))
 - Secondary side circuit outlet hot water temperature: 65°C (149°F)
 - Unit outlet hot water temperature: 70°C (158°F)
- 2-2. Inlet water temperature
 - Secondary side inlet water temperature: 10°C (50°F)
 - Unit inlet water temperature: 15°C (59°F)
- 3. Used flow rate

 $(40000 \text{ W}/(70-15)^{\circ}\text{C}/4200 \text{ J/kg} \cdot \text{K}) \times 60 \text{ s} = 10.4 \text{ kg/min} \approx 10.4 \text{ \ell/min} \approx 2.74 \text{ GPM}$


Step 2 Determination of model

Notes on selection

- Select a heat exchanger that allows water to pass through both of the flow channels.
- Select a heat exchanger so that the pressure applied to the heat exchanger in the on-site system will not
 exceed the maximum operating pressure of the heat exchanger.
- Select a heat exchanger that allows flowing at a flow rate of maximum 30 l/min (7.9 GPM).
- Select a heat exchanger with a capacity of at least 40000 W (136000 BTU/h).
- Ensure that the shearing stress at the flow rate to be used will be 16 Pa (0.01 ftAq) or more. (Refer to step 4.)

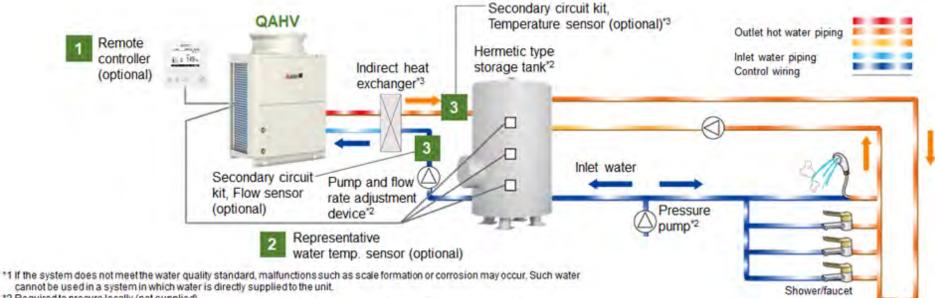
Overview of system

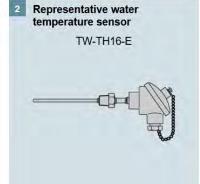
This system has a pump provided at the outlet of the tank and a three-way valve provided downstream of the pump, and adjusts the flow rate by controlling the opening and closing of the three-way valve.

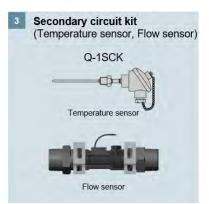
	Flow rate output device	Flow rate adjustment device
	Pump	Three-way valve
Wiring connection places	1-3 of CN512 of control board (ON/OFF output)	Sub box terminal block No. 10, 11, 12

Notes on selection method and system configuration

Notes on pump selection and connection

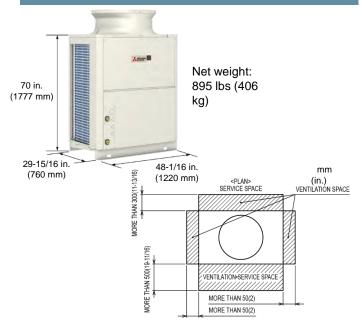

- Calculate the total pump head according to the system at the site and then select a pump capable of outputting
 the minimum flow rate of about 3 l/min (0.8 GPM) and maximum flow rate of about 30 l/min (7.9 GPM) with
 the necessary pump head for the piping at the site.
- When selecting the pump, please note that output at a high flow rate will not occur if the flow rate with the pump head of the system at the site is low, and output at a low flow rate will not occur if the flow rate is too high.
- Be sure to check that the flow rate becomes 20 to 30 l/min (5.3 to 7.9 GPM) at the maximum output during a flow rate adjustment test run.
- * If the flow rate is not within the range of 20 to 30 l/min (5.3 to 7.9 GPM), select a different pump or adjust the maximum frequency using an inverter, etc. so that the maximum flow rate of 20 to 30 l/min (5.3 to 7.9 GPM) is achieved.
- * To select a proper pump, first select a pump that supports slightly high flow rate, and then adjust the frequency with an inverter so that the flow rate becomes 20 to 30 l/min (5.3 to 7.9 GPM) at the maximum output. (In that case, an inverter is necessary to be prepared separately.)




- cannot be used in a system in which water is directly supplied to the unit.
- *2 Required to procure locally (not supplied).
- *3 If the water entering the QAHV does not meet the water-quality standards, use an indirect heat exchange method. Prepare the secondary circuit kit (option parts) and an indirect heat exchanger (locally procured).

Field Supply Equipment

- Hermetic type storage tank
- **Heat exchanger**
- Pump
- **Expansion Tank**
- **Others**



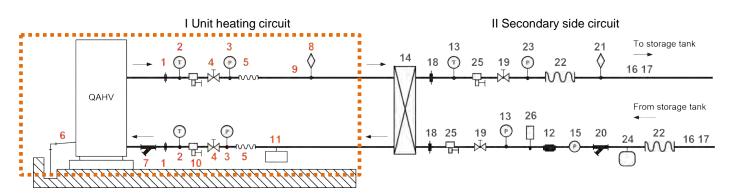
Installation Space requirement

Notes on Water pipe installation

The maximum piping length is 196 ft (60 m).

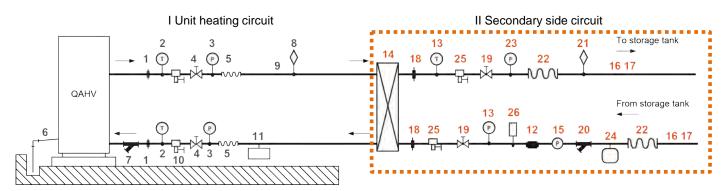
- $\bullet\,\mbox{ln}$ case of installed the unit above the storage tank
 - Decide the height so that the unit inlet water pressure will not be negative for the tank pressure.

- In case of installed the unit below the storage tank
- Decide the height so that the unit inlet water pressure will be 168 ftAq (0.5 MPa) or below for the tank pressure.
- * When the heat exchanger is installed in the secondary side, the restrictions related to the inlet water pressure still apply.


- Piping length restrictions
- The maximum piping length is 60 m (196 ft).

Select appropriate diameter pipes to prevent negative pressure from the pumping head and the pressure loss in the pipes. Pumping head (when maximum flow rate is 20.5 l/mm (5.4GPM): 68 kPa (22.8 ftAq)

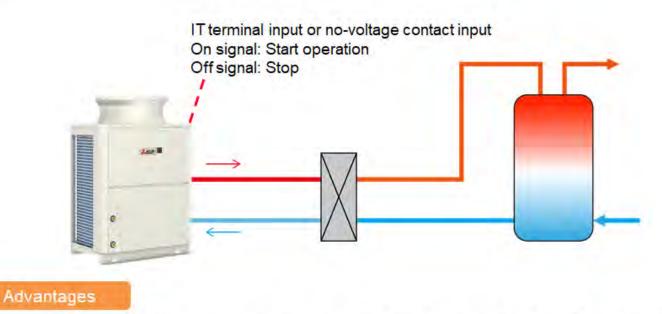
* When no secondary-side control is used, items 12 through 24 are not required.



No.	Component	Application			
1	Union joints/flange joints	Required to allow for a replacement of equipment.			
2	Thermometer	Required to check the performance and monitor the operation of the units.			
3	Water pressure gauge	Recommended for checking the operation status.			
4	Valve	Required to allow for a replacement or cleaning of the flow adjuster.			
5	Flexible joint	Recommended to prevent the noise and vibration from the pump from being transmitted.			
		Install the drain pipe with a downward inclination of between 1/100 and 1/200. To prevent drain water from freezing in winter, install the drain pipe as steep an angle as practically possible and minimize the straight line. For cold climate installation, take an appropriate measure (e.g., drain heater) to prevent the drain water from freezing.			
7	Strainer	Install a strainer near the unit to keep foreign materials from entering the water-side head exchanger.			
8	Air vent valve	Install air venting valves to the places where air can accumulate. Automatic air vent valves are effective.			
9	Water pipe	Use pipes that allow for easy air purging, and provide adequate insulation.			
10	Drain valve	Install drain valves so that water can be drained for servicing.			
11	Expansion tank	Select an expansion tank that is suitable for the system.			

* When no secondary-side control is used, items 12 through 24 are not required.

No.	Component	Application
12	Flow sensor (Optional parts)	Measures and controls the secondary side flow rate
13	Temperature sensor (Optional parts)	Measures and controls the secondary side outlet hot water temperature
14	Plate heat exchanger	Exchanges heat between hot water output from the unit and water input from the tank
15	Pump + Flow rate adjustment device	Outputs hot water from the secondary side and adjusts the flow rate
16	Water piping	Water flow channel
17	Anti-freeze heater	Prevents pipe damage due to freezing of the water circuit
18	Union joint	Improves the workability of replacing equipment
19	Valve	Improves the workability of cleaning the heat exchanger and replacing parts
20	Strainer	Prevents foreign materials from entering into the heat exchanger
21	Air vent valve	Bleeds air from the pipe
22	Flexible joint	Prevents the propagation of vibration
23	Water pressure gauge	Used to check the operation status
24	Expansion tank	Absorbs excessive water pressure due to expansion caused by a rise in temperature
25	Drain valve	Improves workability of replacing equipment
26	Safety valve	Prevents rupturing of the water circuit



Control Method

■ Local control

Controlling QAHV's outlet hot water temperature by analog signal input or dip switches (Control board on the unit).

Using the QAHV input and output contacts, hot water supply system can be freely configured on-site. This system is suitable if you want to configure a system freely by yourself.

[V Electrical Wiring Diagram]

Service Manual Page 84 of 180

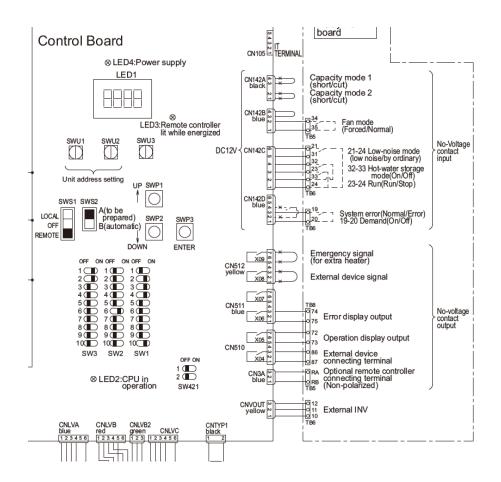
When using a local controller, refer to the table below for the types of input/output signals that are available and the operations that correspond to the signals. External Input/Output

Input type	Dry contact		ON (Close)	OFF (Open)	Terminal block/		sensor me		Locald	
					connector	main sensor	sub sensor *2	sub unit	main unit	sub unit
	(a) UNIT Run/ OPERATION Stop		The unit will go into operation when the water temperature drops below the preset temperature.	The unit will stop except when the unit is in the Anti-Freeze mode.	TB6 23-24	△*3	-	-	0	-
	(b) FAN MODE	Forced/ Normal	The fan will remain in operation after the compressor has stopped (including when the OPERATION status is "STOP").	The fan will stop when the compressor stops.	TB5 34-35	Δ	-	-	Δ	-
	(c) PEAK- DEMAND CONTROL	On/Off	The unit will operate at or below the maximum capacity level that was set for the Peak-demand control setting.	-	TB6 19-20	Δ	Δ	Δ	Δ	Δ
	(d) Hot water storage mode	On/Off	Heating operation with the set outlet hot wa- ter temperature	Stop	TB6 32-33	△ *3	-	-	0	-
	(e) Low-noise mode	On/Off	Operation using the set capacity as an upper limit	Normal operation	TB6 21-24	Δ	Δ	Δ	Δ	Δ
	Analog				Terminal block/ connector	main sensor	sub sensor *2	sub unit	main unit	sub unit
	(f) WATER TEMP SETTING CONT	ROL	Water temperature control can be set by usin the CN421 on the circuit board. One analog from the following types: 4-20 mA, 1-5 V, 0-1	input type can be selected	CN421 2(+)-3(-)	Δ	-	-	Δ	-
	(g) EXTERNAL WASENSOR 1 (opt	TER ional)			TB5 25-26	0	0	-		
	(h) EXTERNAL WA SENSOR 2 (opt		-		TB5 27-28	0	0	-	-	-
	(i) EXTERNAL WA SENSOR 3	TER	-		TB5 27-30	0	0	-		-
	(j) EXTERNAL WA SENSOR (secon circuit)		-		TB5 T1-T2	0*4	0*4	0*4	0*4	0*4
	(k) EXTERNAL PUMP (secondary circuit)		-		CN512 1-3	0*4	0*4	0*4	0*4	0*4
	(I) FLOW SENSOR (secondary circu				TB4 13-14	0*4	0*4	0*4	0*4	0*4
	(m) FLOW ADJUS DEVICE (secon circuit)	TMENT ndary	-		TB6 10-12	0*4	0*4	0*4	0*4	0*4
Output type	Contact type		Conditions in which the contact closes (turns on)	Conditions in which the contact opens (turns off)	Terminal block/ connector	main sensor	sub sensor *2	sub unit	main unit	sub unit
	(n)ERROR INDICATOR	Close/ Open	The unit has made an abnormal stop.	During normal operation	TB8 74-75	Δ	Δ	Δ	Δ	Δ
	(o) OPERATION INDICATOR	Close/ Open	The "Unit Operation" contact (item (a) above) or the ON/OFF button on the remote controller is ON.	The "Unit Operation" con- tact (item (a) above) or the ON/OFF button on the re- mote controller is OFF.	TB8 72-73	Δ	Δ	Δ	Δ	Δ
	(p) Emergency signal (for extra heater)	Close/ Open	Outside temperature is at or below 1°C (34°F)	Outside temperature is at or above 3°C (37°F)	CN512 5-7	Δ	Δ	Δ	Δ	Δ
	(q) EXTERNAL DEVICE	Close/ Open	During freeze-up protection operation During pump residue operation	Other than the items at left	TB8 86-87	Δ	Δ	Δ	Δ	Δ
RC/ SC/ M-NET	REMOTE CONTROLLER		PAR-W31MAA		TB5 RA-RB	Δ	-	-	-	-
W-NE1	SYSTEM CONTROLLER		AE-200		TB7 MA-MB*1	Δ	-	-	-	-
	M-NET		-		TB3 MA-MB	0*5	0	0	0*5	0

O: Setting required △: Settings are required as needed -: No settings required

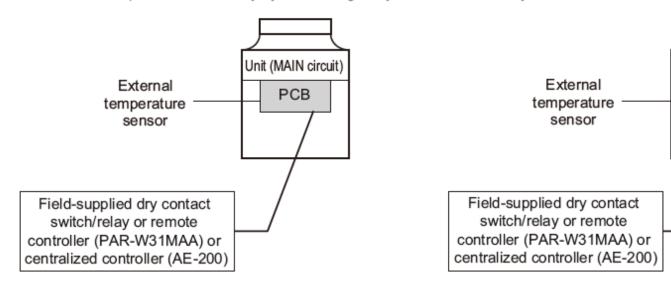
*1 When AE-200 is connected, leave the power jumper on the outdoor unit as it is (Connected to CN41 at factory shipment). If the power jumper is connected to CN40, power will excessively be supplied and AE-200 will not properly function.

*2 Only Six-sensor method.


Required if not connected to PAR-W31MAA and AE-200.

'4 Required only when secondary control is enabled.

*5 Required only when multiple units are connected.



External Control or Single Sensor Control

Each unit is operated individually by connecting a dry contact switch/relay to each unit.

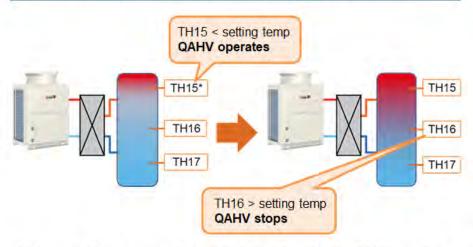
PAR-W31MAA

Up to 16 units can be controlled with one remote controller.

Unit (MAIN circuit)

PCB

PAR-W31 or AE-200 is required

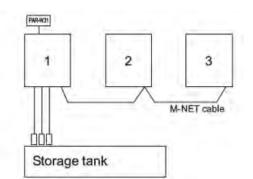

Domestic hot water storage volume is large

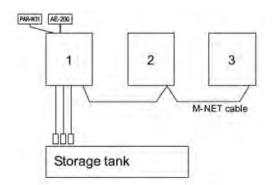
TH16 < setting temp QAHV operates TH15 TH16* TH17 TH17 TH17 TH17 TH17 TH17

Hot water storage operation is performed so that the TH17 reading is higher than the set temperature of QAHV.

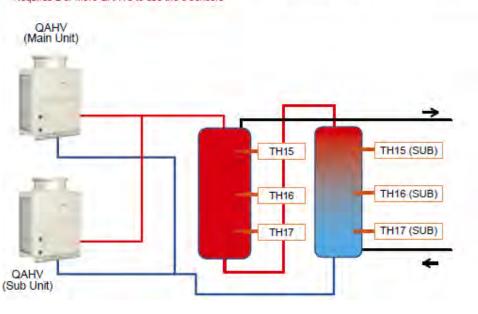
Operation of the unit is controlled based on the sensor reading.

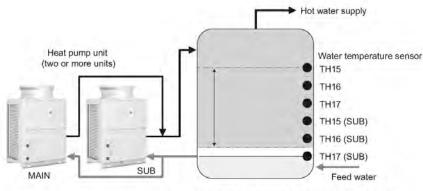
Domestic hot water storage volume is small


Hot water storage operation is performed so that the TH16 reading is higher than the set temperature of QAHV.


Compared to when DHW storage volume is large, the hot water storage operation time can be reduced, enabling efficient operation.

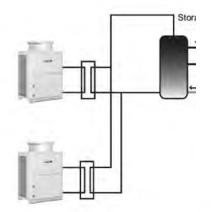
To be set on the circuit board for each operation mode/Default value is differential 50°F (10°C).

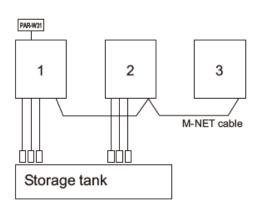


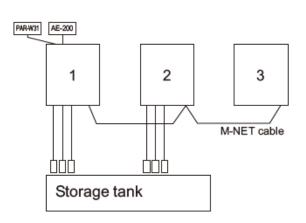

^{*} TH16 temperature < (Set water temperature - Mode 2 Thermo differential value [Code: 1509]). Unit operation start.

^{*} TH15 temperature < (Set water temperature - Mode 1 Thermo differential value [Code: 1508]). Unit operation start.

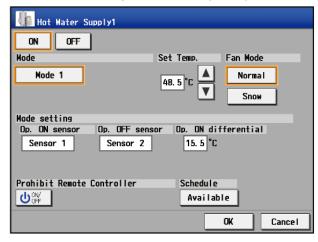
6 Sensor Control Method Controlling the water temp in the storage tank by using six water temp sensors (TW-TH16E)


¹ Requires 2 or more QAHVs to use the 6 sensors

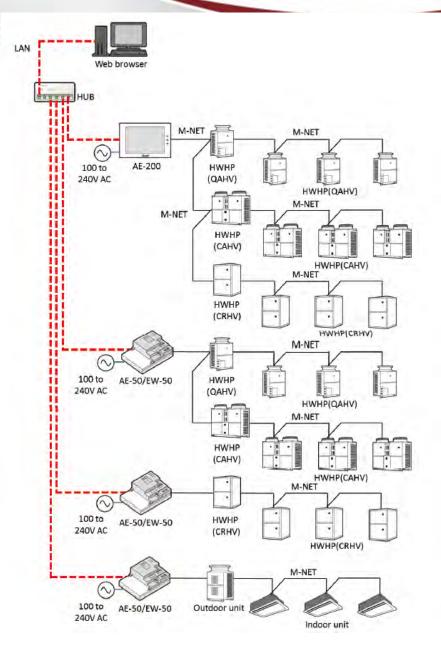

* The use of six-sensor monitoring requires the installation of at least two units. When using only one unit for industrial use, three sensors will be used.

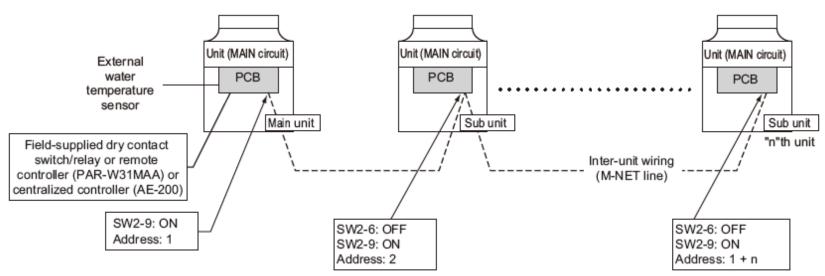

*Each QAHV will require a dedicated heat exchanger

Changes for the Better

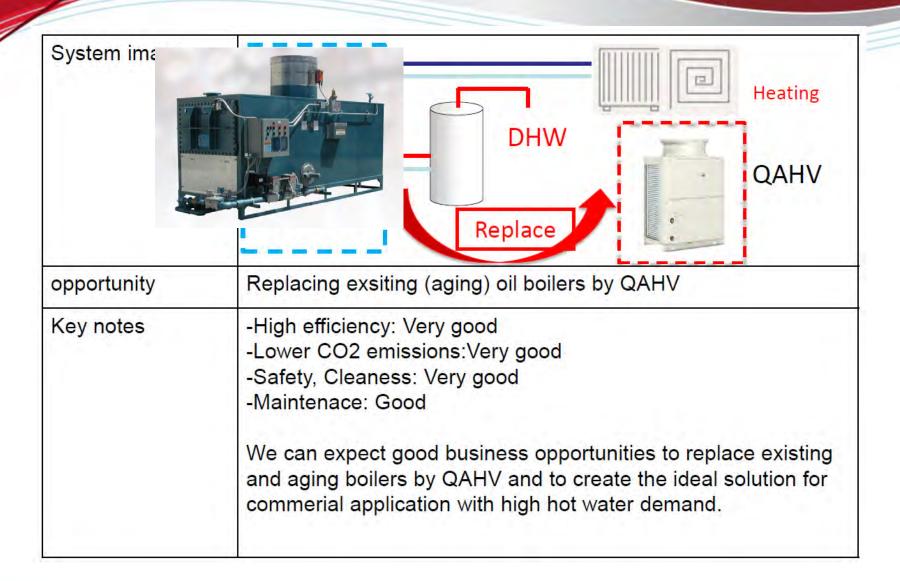


AE-200


HWHP operation screen (QAHV)


Apportion function NOT available.

Up to 16 Units/ 2176 MBH Total


^{*} The main unit is the unit to which an external water temperature sensor is connected.

(*) Main/Sub units and switch settings

	SW2-9 (Multiple system)
Main unit (Unit to which the external water temperature sensor is connected.)	ON

Adding QAHV to existing Atmospheric Boiler Plant

Opportunity

System image	VRF (Cooling) + QAHV DHW
opportunity	Promoting QAHV for commercial applications where City multi is also installed.
Key notes	-Envirnmnnetal benefits: Very good (compared to boilers) -Running cost saving: Very good -Control/monitoring: Good (with AE-200E) We can supply our customers with the complete solution for Cooling, Heating and Hot water by proposing City Multi plus QAHV/CAHV (plus AE-200E).
	COPYRIGHT © 2013 MITSUSISHI ELECTRIC CORPORATION. ALL RIGHTS RESERVE

QAHV-N136TAU-HPB

- Multiple module combination
- High capacity per module
- Utilizes Natural refrigerant (CO₂)
- High efficiency (Achieved COP 4.11*1)
- Supply high temperature hot water (Up to 176°F/80°C)
- Operable even at low outdoor temp of -13°F/-25°C*2
- External Control available

^{*1} Under normal heating conditions at the outdoor temperature of 80.6°FDB/71.2°FWB (27.0°CDB/21.8°CWB), the outlet water temperature of 120°F (48.9°C), and the inlet water temperature of 70°F (21.1°C).
*2 Maximum outlet hot water temp on secondary side is 158°F/70°C.

Discussion

