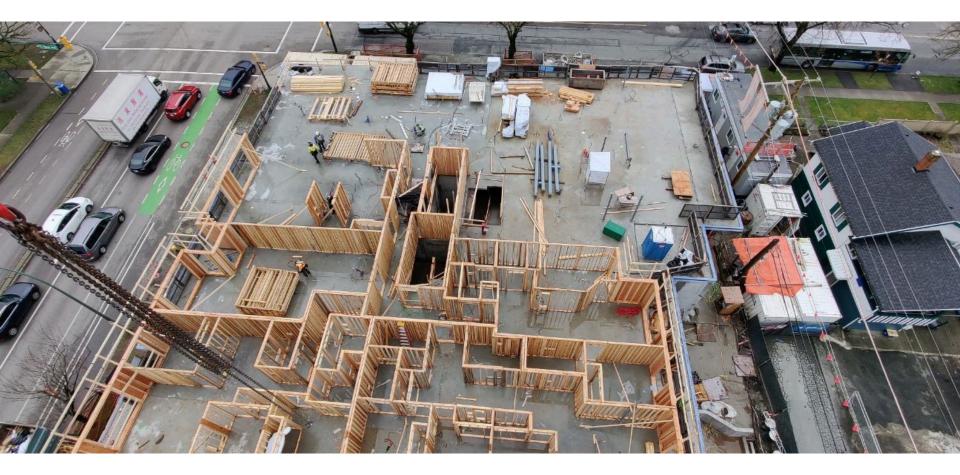


THE PEAK - 3737 Rupert St. Vancouver BC 52 Suite Market Rental Housing + 2 commercial units

CΛΝΛDΛ

architecture

E. 22nd Ave


Rupert St

CONSTRUCTION TEAM

DESIGN TEAM

compactness

THEMES

window / shading

materials / building science

details / mock-up

commissioning

design challenges

design decisions

energy model

verification

constructability

cost

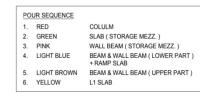
schedule

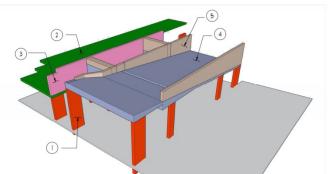
trades education

Form driven by planning department's urban design agenda, and the client's desire to maximize unit count and FSR

Corners and steps are expensive

compactness


window / shading

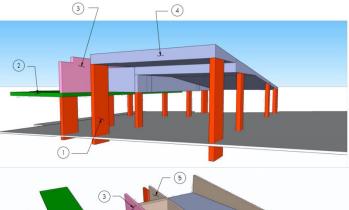

materials / building science

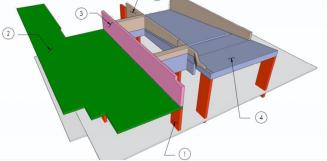
details / mock-up

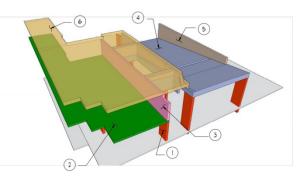
commissioning

architecture

CORNERSTONE


Complex ground floor geometry isn't influenced by passive house metrics


(1)


DESIGN TEAM

CONSTRUCTION TEAM

Concrete pour sequence diagram

compactness

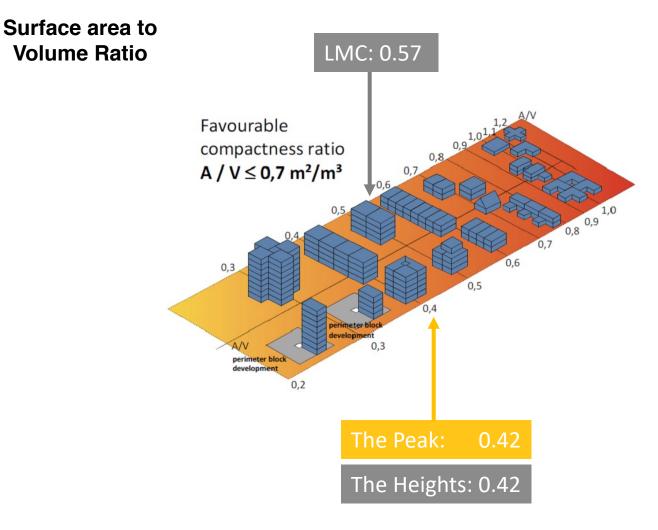
window / shading

materials / building science

details / mock-up

commissioning

DESIGN TEAM


DESIGN TEAM

compactness

window / shading

materials / building science

details / mock-up

DESIGN TEAM

CONSTRUCTION TEAM

compactness

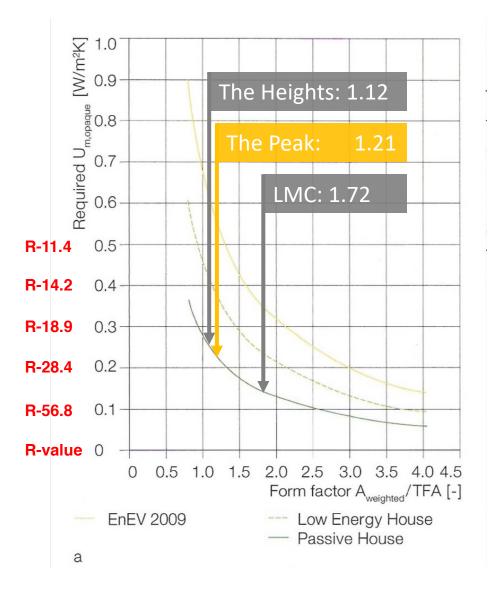
window / shading

materials / building science

details / mock-up

commissioning

Factor The Peak Average weighted U-value:


Heat Loss Form

0.266 W/m²K R-21.3

Average U-value windows: 0.84 W/m²K

> Heating Demand: 13.1 kWh(m²a)

PER: 56.6 kWh(m²a)

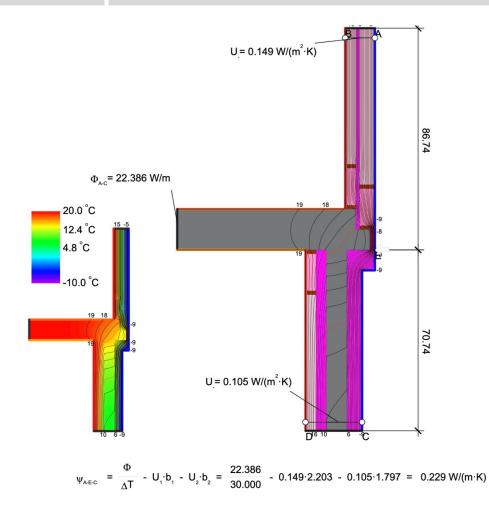
DESIGN TEAM

CONSTRUCTION TEAM

compactness

window / shading

materials / building science


details / mock-up

commissioning

Fewer corners, fewer thermal bridges to model

CORNERSTONE

Material	_λ [W/(m·K)]	
Blown fiberglass R4.0/inch	0.036	
Concrete, reinforced (with 1% of steel)	2.300	
EPS R4.0/inch	0.036	
EQ 2x4 16in oc w Blown fiberglass	0.044	
EQ 2x6 16in oc w Blown fiberglass	0.044	
Gypsum board R0.9/inch	0.160	
Plywood 500 kg/m3	0.130	
Timber 450 kg/m3 (softwoods)	0.120	

Boundary Condition	q[W/m ²]	θ[°C]	R[(m ² ·K)/W]
Exterior, ventilated		-10.000	0.130
Interior, heat flux, downwards		20.000	0.170
Interior, heat flux, upwards		20.000	0.100
Interior, normal, horizontal		20.000	0.130
Symmetry/Model section	0.000		

DESIGN TEAM

CONSTRUCTION TEAM

compactness

window / shading

materials / building science

details / mock-up

Thermal bridge inputs													
No.	Thermal bridge - denomination	Group No.	Assigned to group	Quan tity	x (Length [m]	-	Subtraction length [m])=	Length <i>t</i> [m]	U	ser determined psi value [W/(mK)]	d
1	1.] Slabs/Ground				X (-) =				
2					x (-) =				
3	Elev.Lobby Int.Corners C1C/C1J	16	Perimeter thermal bridges	1	x (10.21	-) =	10.21		0.025	\rightarrow
4	Elev.Lobby Slab on Grade:7/A-D.2	16	Perimeter thermal bridges	1	x (21.53	-) =	21.53		0.008	\rightarrow
5	Elev.Lobby Slab to Pit wall (Ext.perim.) 4/A-D.1	16	Perimeter thermal bridges	1	x (5.62	•) =	5.62		0.008	\rightarrow
6	Elev.Lobby Slab to Pit wall (Int.perim.) 4 SIM/A-D.1	17	Thermal bridges FS/BC	1	× (5.62	-)=	5.62		0.018	\rightarrow
8	Elev.Pit Slab on Grade: F1D/C1E	47	Thermal Incidence FO/DO	1	X (11.23	-)=	44.00	\vdash	0.596	\rightarrow
9	Elev.Pit Slab on Grade: F1D/C1E	17	Thermal bridges FS/BC	1	x (11.23	-)=	11.23	\vdash	0.596	+
10	Ext.Wall/GF				×(-)=		H		+
11	Ext.Wall at GF: Parkade Entry Ramp C1C/F1B (perimeter)	16	Perimeter thermal bridges	1	×(10.20)=	10.20	\vdash	0.224	+
12	Ext.Wall at GF: Parkade Entry Ramp C1C-SIM/F1B (perimeter)	16	Perimeter thermal bridges	1	× (4.00)=	4.00	\vdash	0.088	+
13	Ext.Wall at Ground Floor: 1A at Step Slab (perimeter)	16	Perimeter thermal bridges	1	x (76.50) =	76.50		0.030	+
14					x (-) =				+
15					x (-) =				-
16	Ext.Wall at Ground Floor: S.Wall at Step Slab (perimeter)	16	Perimeter thermal bridges	1	x (16.81	-)=	16.81		0.006	+
17	Ext.Wall over Parking Inverse (Int.perim.) at Elev.Lobby: C1C/F1B	16	Perimeter thermal bridges	1	x (27.13) =	27.13		0.033	-
		10	Fenneter tremarbidges			27.15	-	_		27.13			
18	Total Perimeter: Ext.Wall at Ground Floor over Parking				X (-) =			0.055	$ \rightarrow $
19					X (-) =	· · · · · ·			\rightarrow
20	Ext.Wall/L2				x (-) =				$ \rightarrow $
21					x (5.39	-) =				\rightarrow
22	Ext.Walkway over Amenity: Int.Edge 7/A-D.11	15	Thermal bridges Ambient	1	x (5.55	-) =	5.55		0.055	\rightarrow
23	Ext.Wall at L2 Deck Slab Edge 7/A-D.3	15	Thermal bridges Ambient	1	× (13.21	-)=	13.21		0.341	\rightarrow
24	Ext.Wall at L2 Slab Edge 5/A-D.3	15	Thermal bridges Ambient	1	× (13.25	•) =	13.25		0.217	\rightarrow
25	Ext.Wall at L2 Slab Edge over Parkade Ramp 3/A-D.3	15	Thermal bridges Ambient	1	x (9.35	-) =	9.35		0.288	+
26	Ext.Wall at L2 Slab Edge over Parkade Ramp Inverse 3 SIM/A-D.3	15	Thermal bridges Ambient	1	x (20.33	-) =	20.33		0.091	
27	Ext.Wall at L2 Slab: Ext.Edge over Ext. Space 7 SIM/A-D.3	15	Thermal bridges Ambient	1	х (7.67	-) =	7.67		0.125	
28	Ext.Wall at L2 Slab: Int.Edge over Ext. Space 7 SIM/A-D.3	15	Thermal bridges Ambient	1	x (7.95	-) =	7.95		0.158	\rightarrow
29					x (-) =				\rightarrow
30	Floor over L2 Ext.Space: Int.Edge 8 SIM/A-D.5	15	Thermal bridges Ambient	1	× (22.49	-)=	22.49	\square	0.041	+
31	Trainel				X (-)=		\vdash		+
32 33	Typical	15	Thermal bridges Ambient	1	x (410.17	-)=	410.17	\vdash	0.011	+
34	Ext.Wall at Typical Floor line 1/A-D.5	15	Thermal bridges Ambient	-	×(410.17	-)=	410.17	\vdash	0.011	\rightarrow
35	Ext.Wall: Typical Int.Corners 9/A-D.5	15	Thermal bridges Ambient	1	× (238.20	-) =	238.20	\vdash	0.029	+
36	Extrail. Typical Incomers area.s	15	Themai bildges Ambient		×(230.20	-)=	230.20	\vdash	0.023	+
37	Roof/Decks/Elev.Overrun				×()=		\vdash		+
38					x ()=		\vdash		+
39					x (-)=		\square		+
40	Ext.Wall at Vinyl Decks 3/A-D.13	15	Thermal bridges Ambient	1	× (91.85	-)=	91.85		0.005	+
41			-		× (-)=				+
42					x (-)=				+
43	Main Roof Inverse: At Elevator shaft 2/A-D.13	15	Thermal bridges Ambient	1	x (34.41	-)=	34.41		0.031	1
44					x (-) =				
45	Roof Deck over Interior Space: Int.Edge 1/A-D.11	15	Thermal bridges Ambient	1	X (69.93	-) =	69.93		0.041	
46	-				x (-) =				
47					x (-) =				
48					x (-) =				
49					х (-) =				\square
50					x (-) =				
51	Plumbing Vent stack's: No AAV's	15	Thermal bridges Ambient	1	x (1840.45	-) =	1840.45		0.013	
52	Rainwater Pipes Through Bldg	15	Thermal bridges Ambient	1	x (137.670	-) =	137.67		0.041	
53	HRV- vent side exhaust/intake	15	Thermal bridges Ambient	6	x (-) =	6.00	\square	0.031	
54	Parkade Column	15	Thermal bridges Ambient	3	x (1.00	-) =	3.00		0.677	
55	Possible RW Penetrations & Verticle Lengths	15	Thermal bridges Ambient	9	x (1.00	-) =	9.00	\square	0.062	$ \rightarrow $
100					x (1 I		1 -		1 1		

CONSTRUCTION TEAM

DESIGN TEAM

compactness

THEMES

window / shading

materials / building science

details / mock-up

commissioning

design challenges

design decisions

energy model

verification

constructability

cost

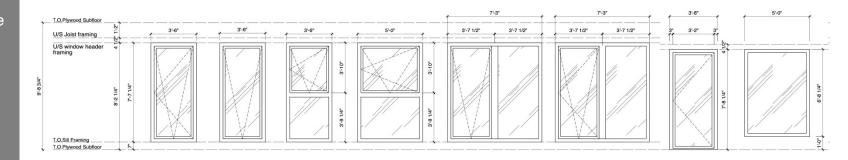
schedule

trades education

compactness

window / shading

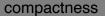
materials / building science


details / mock-up

commissioning

Simplify window types

Reduce number of mullions



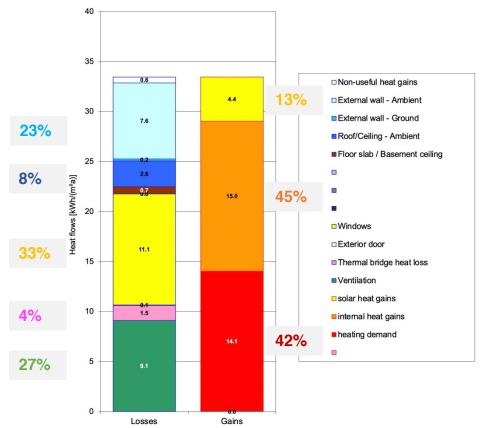
CONSTRUCTION TEAM

DESIGN TEAM

Energy balance heating (annual method)

THEMES

window / shading


materials / building science

details / mock-up

commissioning

Solar gain should not be relied on as major contributor to heat gain

Shading and low heat gain glazing affects the total heating gains, but it is required to limit overheating

	g-Value	Solar irradiation reduction factor	Window area	Window U-Value	Glazing area	Average global radiation		Transmission losses heating period	Heating gains solar radiation heating period	15,000	🗆 Heating ga				■ Transmission losses heating period □ Heating gains solar radiation heating period			
			m²	W/(m ² K)	m ²	kWh/(m²a)		kWh/a	kWh/a									
]	0.34	0.45	134.68	0.86	97.12	118	North	8557	2442	10,000					[
	0.35	0.25	186.88	0.84	130.15	261	East	11515	4274									
	0.34	0.19	150.30	0.84	103.98	476	South	9292	4495	5,000			-		[
	0.34	0.27	171.02	0.82	116.84	283	West	10283	4552		-				[
]	0.00	0.00	0.00	0.00	0.00	412	Horizontal	0	0	0					[
]	0.34	0.28	642.88	0.84	448.09			39647	15763	kWh/a	North	East	South	West	Horizon tal			

compactness

window / shading

materials / building science

details / mock-up

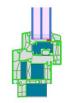
commissioning

DESIGN TEAM

Passive House Institute Dr. Wolfgang Feist 64283 Darmstadt Germany

Category:	Window Frame
Manufacturer:	Innotech Windows + Doors, Inc., Langley, BC, Canada
Product name:	Defender 88PH

CERTIFICATE


Component-ID 1291wi03 valid until 31st December 2021

Certified Passive House Component

This certificate was awarded based on the following criteria for the cool, temperate climate zone

Comfort	$U_W = 0.78$	\leq	0.80 W/(m ² K)
	$U_{W,\text{installed}}$	\leq	0.85 W/(m ² K)
	with U_g	=	0.70 W/(m ² K)

Hygiene $f_{Rsi=0.25}$ \geq 0.70

CORNERSTONE

architecture

Heavy

Require installation by professionals,

Not installed by framers

Cost

Shop drawing more demanding

CONSTRUCTION TEAM

compactness

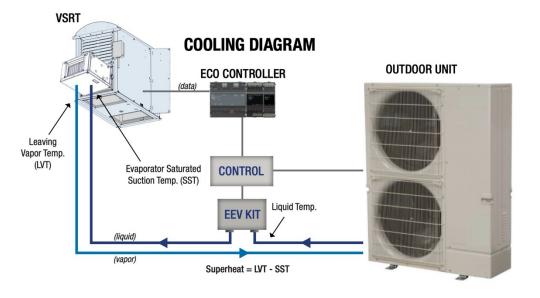
window / shading

materials / building science

details / mock-up

commissioning

DESIGN TEAM


CONSTRUCTION TEAM

Methods for dealing with overheating:

Opening windows

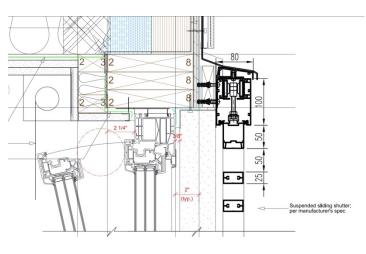
Supply air cooling specified Fixed or Operable shading Ceiling fans (rough-in) Smart glass (could be considered)

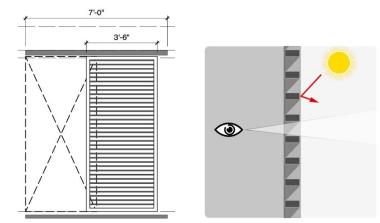
compactness

window / shading

materials / building science

details / mock-up


commissioning



DESIGN TEAM

Shading percentage depends on the angle of the sun - from 100% to 0%

Rely on occupant behavior

Difficult mounting detail

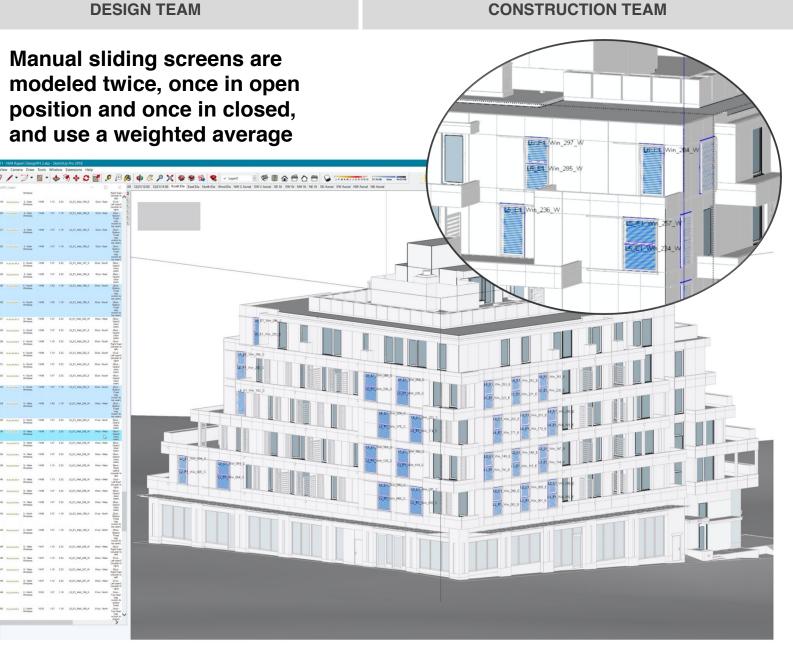
Not much local supply

High cost per window

compactness

window / shading

materials / building science


details / mock-up

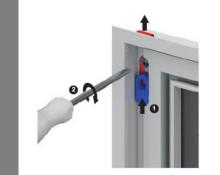
commissioning

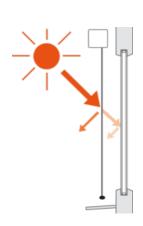
CORNERSTONE

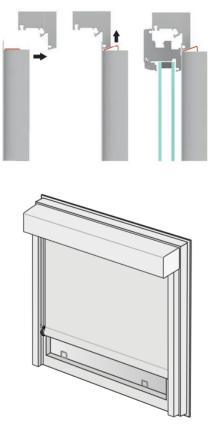
architecture

DESIGN TEAM

compactness


window / shading


materials / building science


details / mock-up

commissioning

Provides 86% shading throughout

Allow for higher solar heat gain glass

Automated for better control

Automated Exterior Blinds

Window frame mounted version that can be installed from the inside

Good long-term access for maintenance

CONSTRUCTION TEAM

DESIGN TEAM

compactness

THEMES

window / shading

materials / building science

details / mock-up

commissioning

design challenges

design decisions

energy model

verification

constructability

cost

schedule

trades education

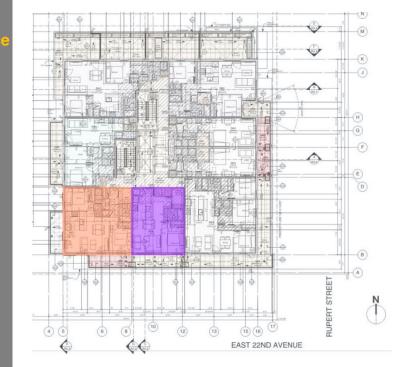
compactness

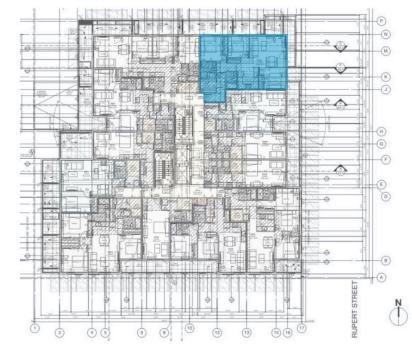
window / shading

materials / building science

details / mock-up

commissioning


DESIGN TEAM


CONSTRUCTION TEAM

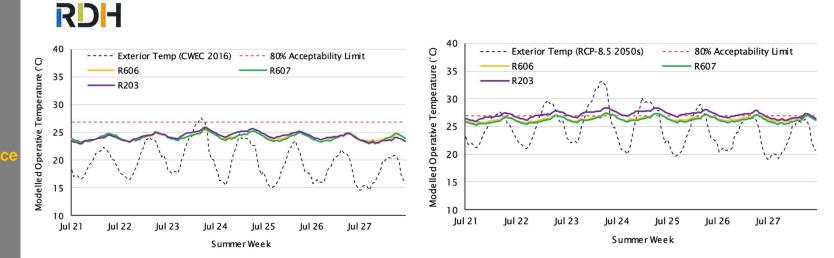
RDH selected 3 units for critical suite overheating analysis

6th floor south facing 1-bedroom suite

6th floor south-west facing 2-bedroom corner suite 2nd floor north-east facing 3-bedroom corner suite

DESIGN TEAM

CONSTRUCTION TEAM


compactness

materials / building science

details / mock-up

commissioning

CWEC 2016

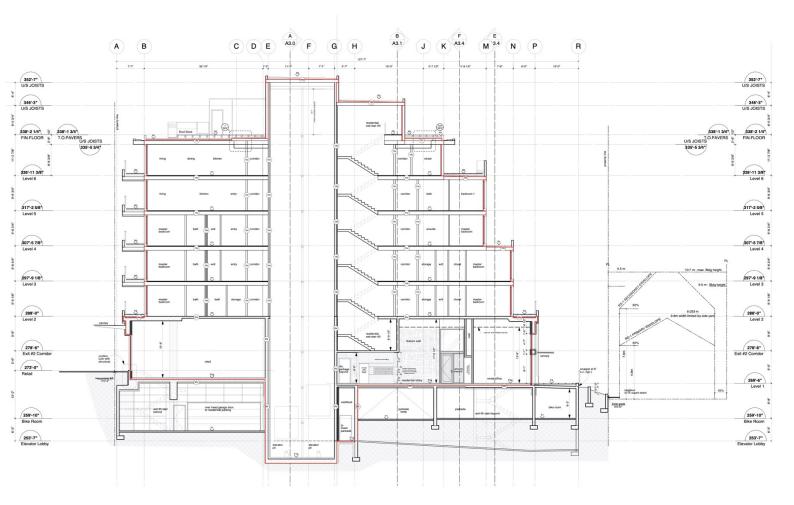
~ 5 hours above 80% acceptability limit

RCP-8.5 2050s

~ 602 hours above 80% acceptability limit

DESIGN TEAM

compactness


window / shading

materials / building science

details / mock-up

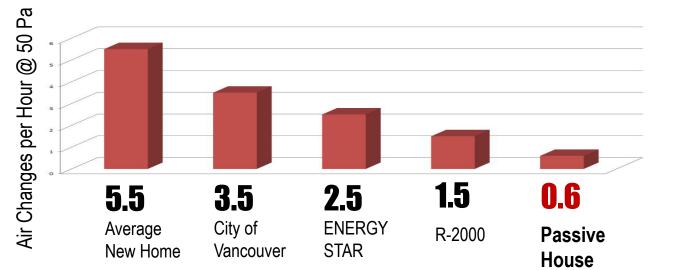
commissioning

Detailing continuity of air barrier in section and in plan

Educating the trade regarding the required details

DESIGN TEAM

compactness

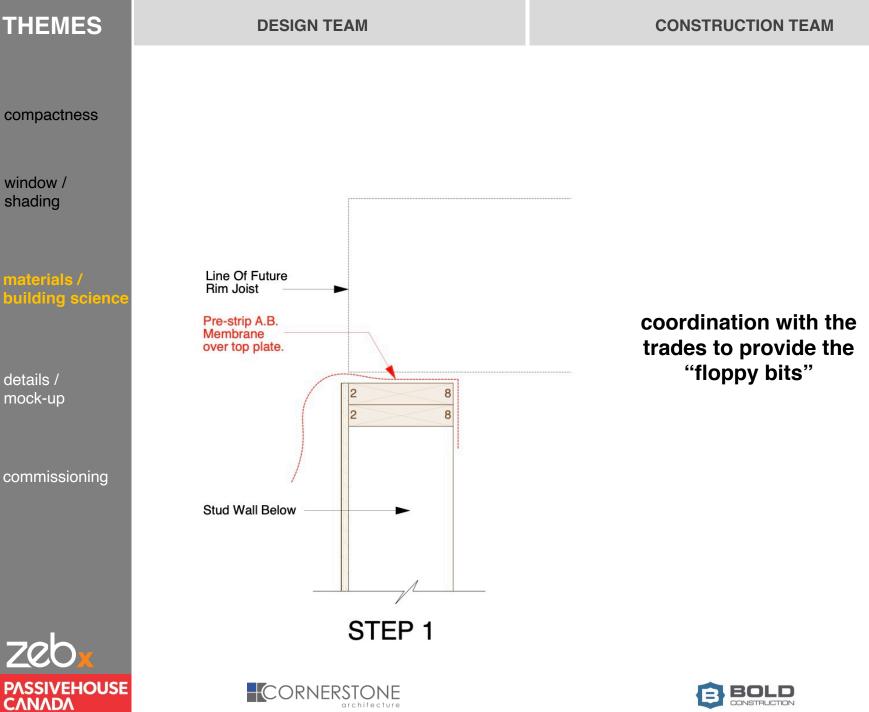

window / shading

materials / building science

details / mock-up

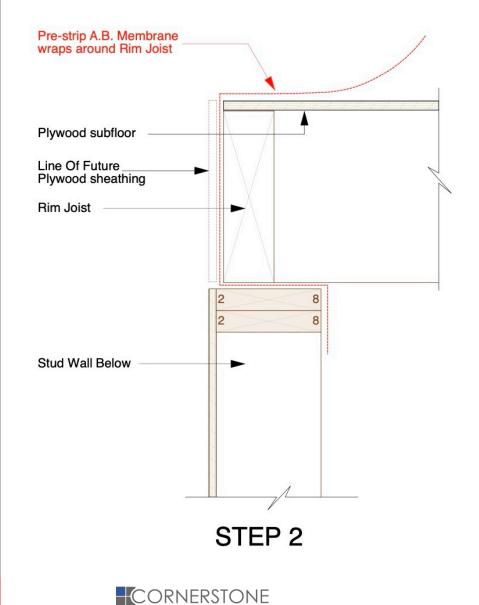
commissioning

400 inch² of hole @ 10Pa for the entire building envelope



DESIGN TEAM

compactness


window / shading

materials / building scienc

details / mock-up

commissioning

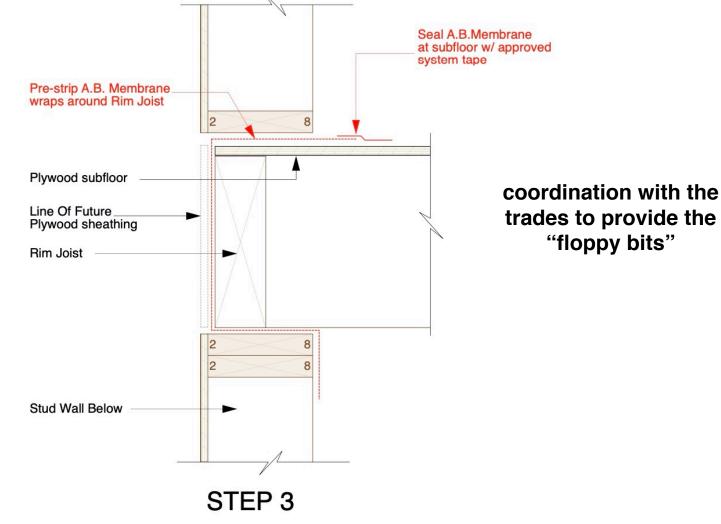
architecture

coordination with the trades to provide the "floppy bits"

THEMES	DESIGN TEAM	
compactness		

CORNERSTONE

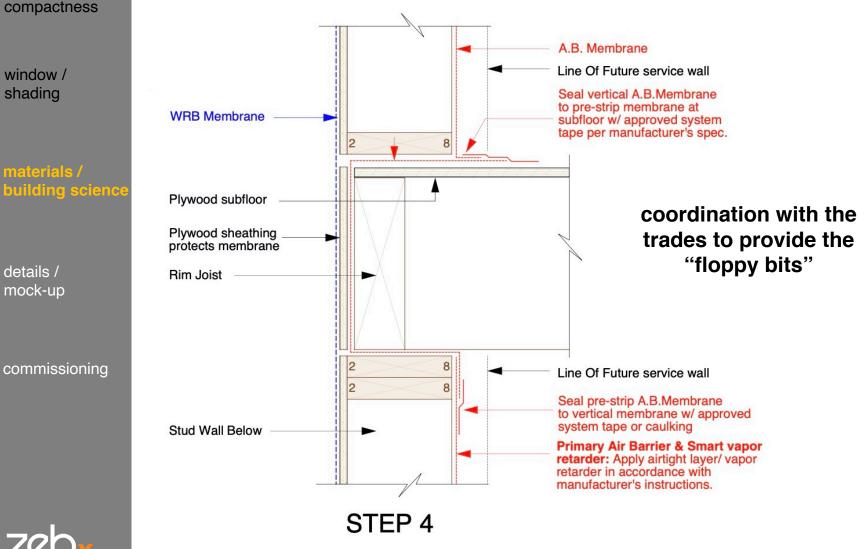
architecture


window / shading

materials / building scienc

details / mock-up

commissioning



CONSTRUCTION TEAM

DESIGN TEAM

compactness

window / shading

materials / building science

details / mock-up

commissioning

DESIGN TEAM

CONSTRUCTION TEAM

Smart vapour control layer allowed more insulation in the roof cavity

> **3**,14 **3**,14

Educate the trade to protect vulnerable air barrier components

compactness

window / shading

materials / building science

details / mock-up

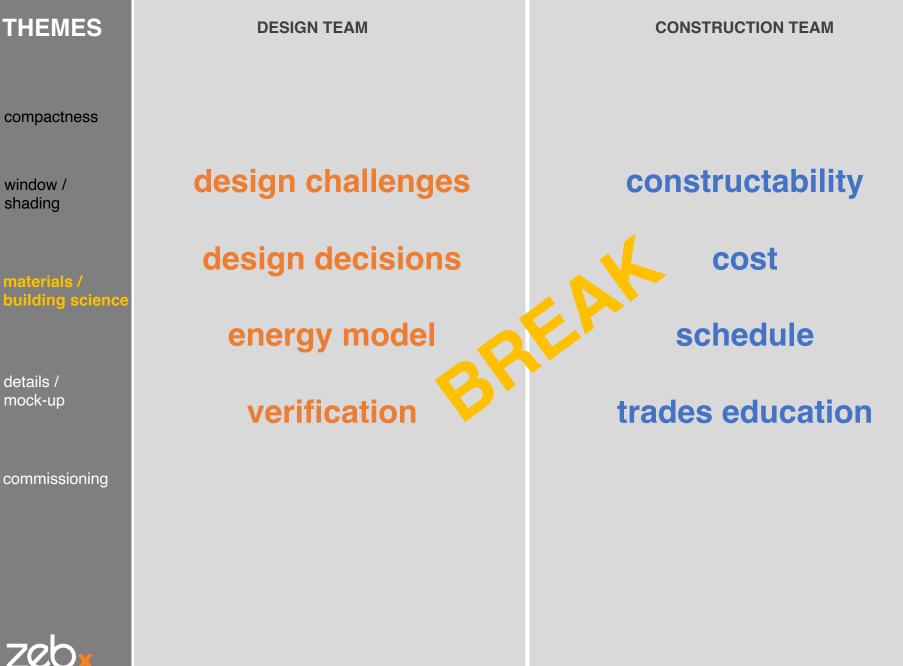
commissioning

DESIGN TEAM

EPDM Gasket Template

Provide penetration schedule

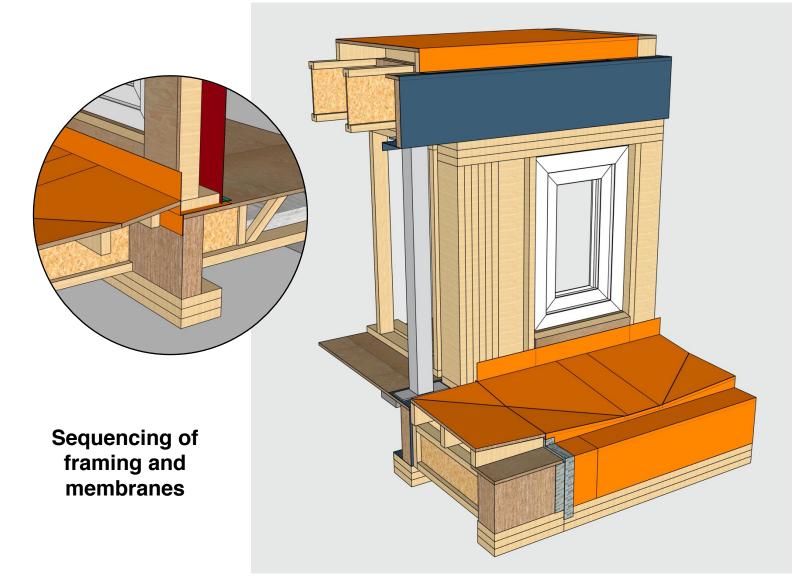
Verify 1 wire per hole, ensure floppy bits are installed by the trades while wires and pipes are being installed



to

15+

DESIGN TEAM


compactness

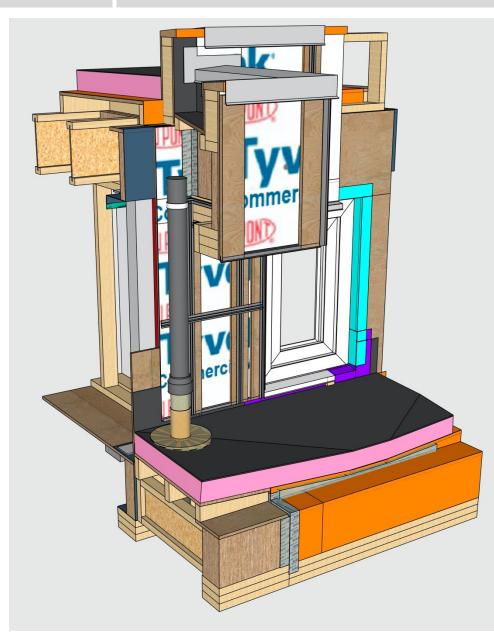
window / shading

materials / building science

details / mock-up

DESIGN TEAM

CONSTRUCTION TEAM


compactness

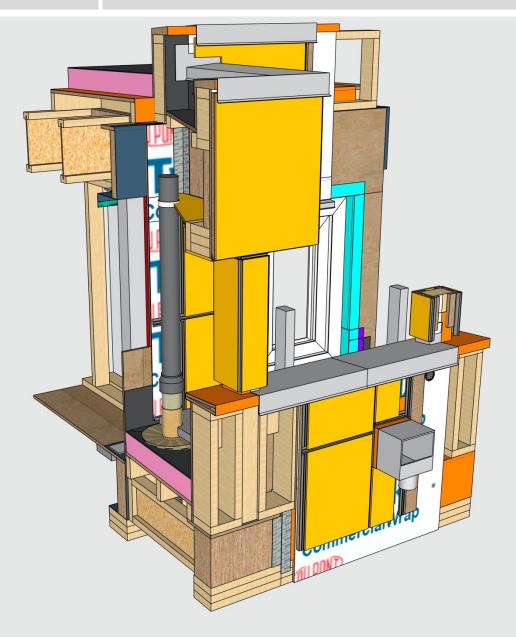
window / shading

materials / building science

details / mock-up

DESIGN TEAM

CONSTRUCTION TEAM

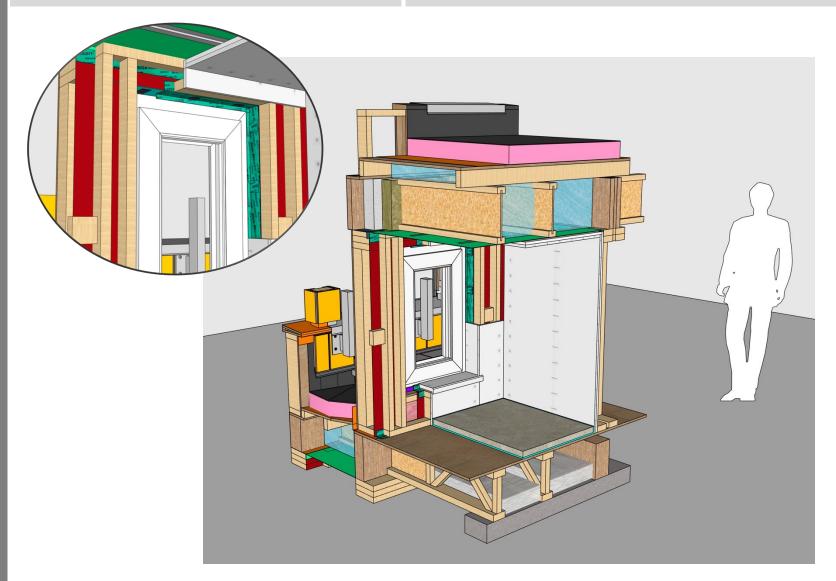

compactness

window / shading

materials / building science

details / mock-up

DESIGN TEAM


compactness

window / shading

materials / building science

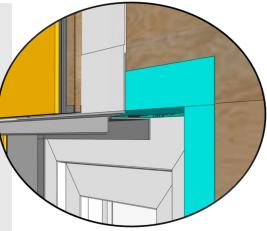
details / mock-up

commissioning

CONSTRUCTION TEAM

compactness

window / shading


materials / building science

details / mock-up

commissioning

Mock-up is key to working out the constructability of the details, educating the trades, and having a reference for when new trades and employees join the team

compactness


window / shading

materials / building science

details / mock-up

commissioning

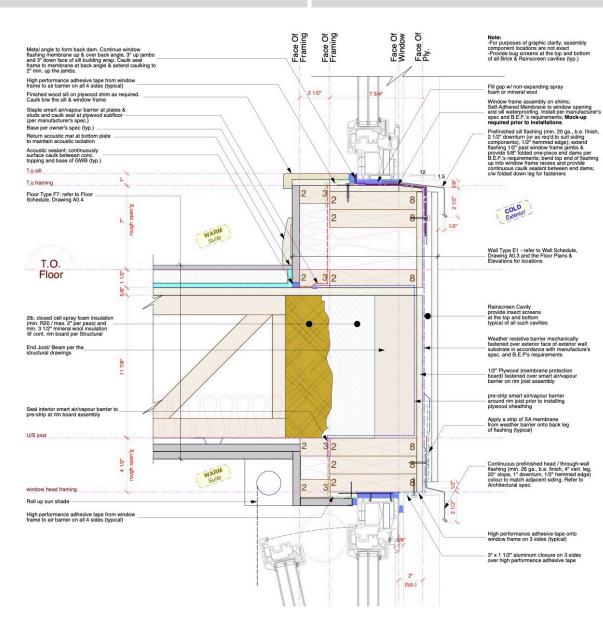
DESIGN TEAM

DESIGN TEAM

CORNERSTONE

architecture

compactness


window / shading

materials / building science

details / mock-up

commissioning

BOLD

CONSTRUCTION

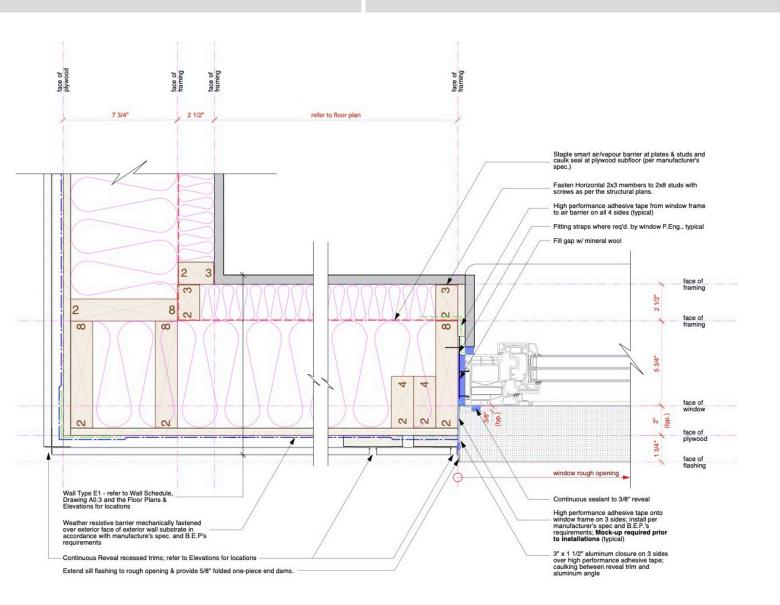
Ê

DESIGN TEAM

CORNERSTONE

architecture

compactness


window / shading

materials / building science

details / mock-up

commissioning

CONSTRUCTION TEAM

DESIGN TEAM

CONSTRUCTION TEAM

compactness	Assembly no.	Building assem	Building assembly description			Interior insulation?			
	01ud	[E1] Exterior Wood Frame PH Wall							
			Heat transmission resista	nce [m²K/W]					
	Orientation of building element	2-Wall	interior R _{si}	0.13					
	Adjacent to	3-Ventilated	exterior R _{se} :	0.13					
window /	Area section 1	λ [W/(mK)]	Area section 2 (optional)	λ [W/(mK)]	Area section 3 (optional)	λ [W/(mK)]		Thickness [mm]	~ [in]
shading	5/8" Gypsum wallboard	0.250		[16	5/8
	2 1/2 ComfortBatt	0.037	2x3 @24" OC	0.130				64	2 1/2
									0
	7.25" ComfortBatt	0.037			2x8 @16" OC	0.130		184	7 1/4
	1/2" Plywood	0.130						13	1/2
materials /	rainscreen								0
details /				1				1	0
									0
	Percentage of sec. 1		Percentage of sec. 2		Percentage of sec. 3			Total	
		72%		9.4%		18.8%			cm
				R (hr ft2.F/Btu)				RSI	R.eff
	U-value supplement		W/(m²K)	31	U-value:	0.181	W/(m²K)		31.45
mock-up			,						

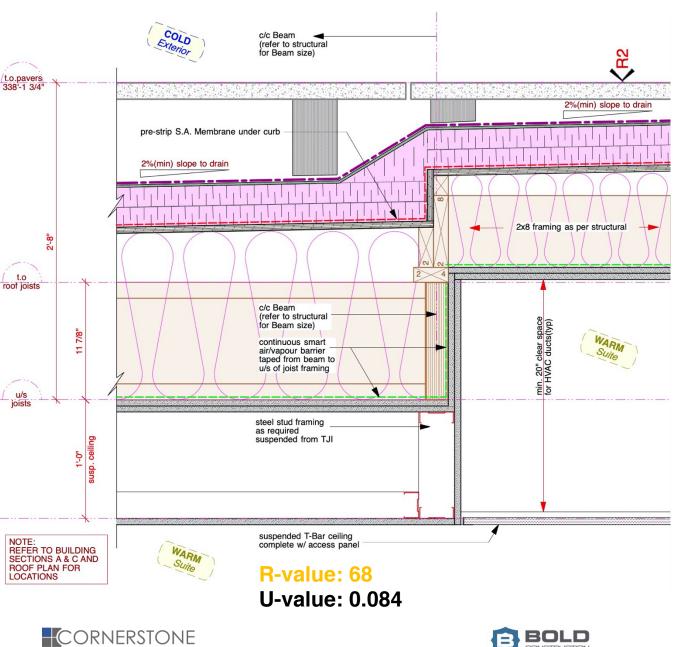
compactness

window / shading

materials / building science

t.o

u/s joists


commissioning

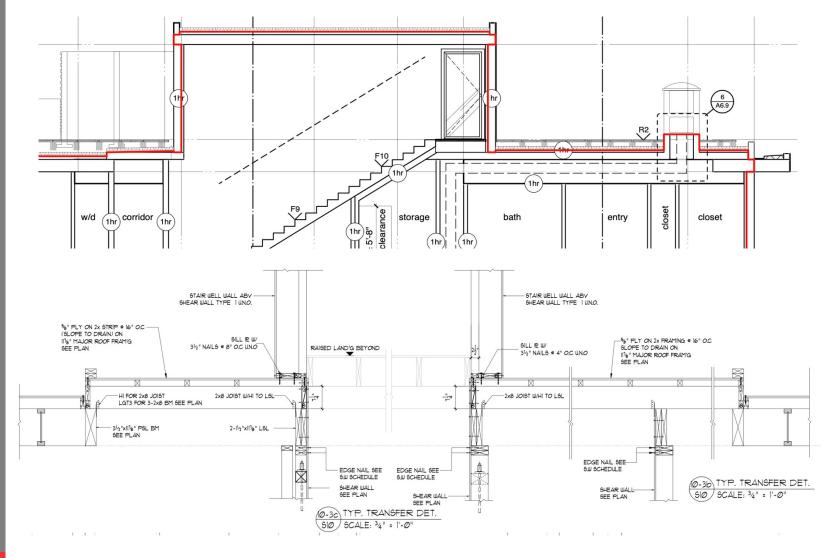
DESIGN TEAM

architecture

CONSTRUCTION

DESIGN TEAM

CONSTRUCTION TEAM


Stepped roof structure to account for ventilation ducts and cooling coils

compactness

window / shading

materials / building science

details / mock-up

compactness

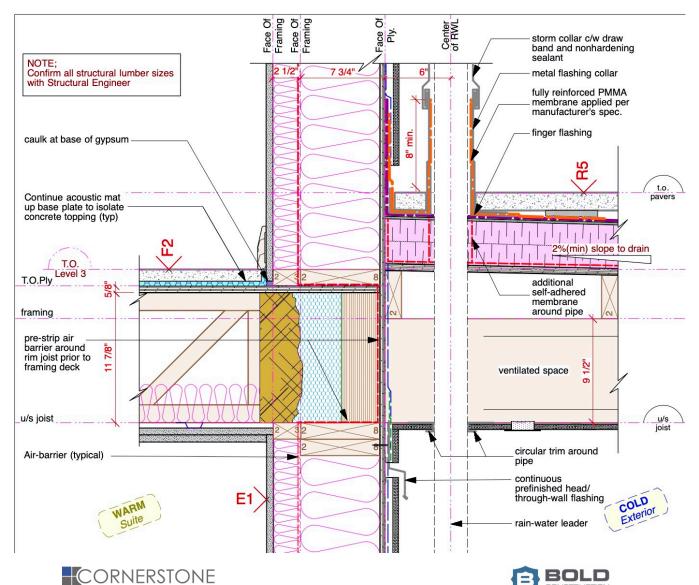
DESIGN TEAM

CONSTRUCTION TEAM

CONSTRUCTION

Exterior rainwater leader to reduce heat loss and thermal bridging

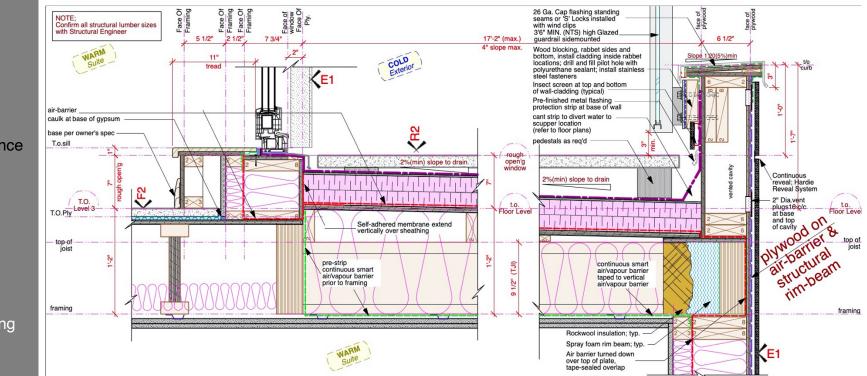
architecture


window /

shading

materials / building science

details / mock-up


DESIGN TEAM

compactness

window / shading

materials / building science

details / mock-up

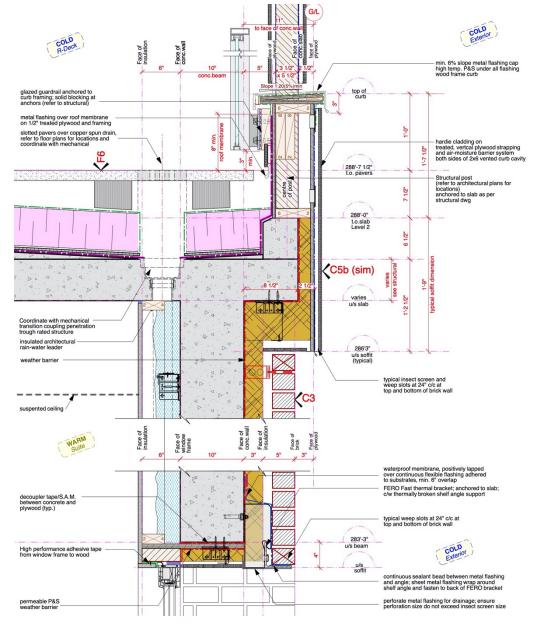
DESIGN TEAM

CORNERSTONE

architecture

CONSTRUCTION TEAM

compactness


window / shading

materials / building science

details / mock-up

commissioning

DESIGN TEAM

CONSTRUCTION TEAM

compactness

window / shading

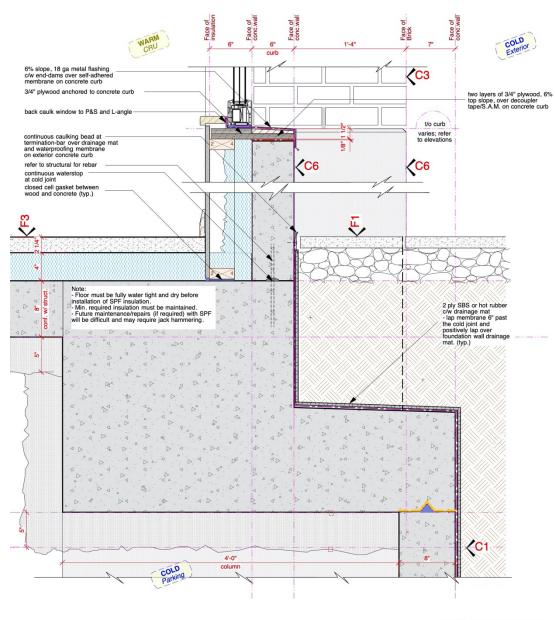
materials / building science

details / mock-up

DESIGN TEAM

CORNERSTONE

architecture

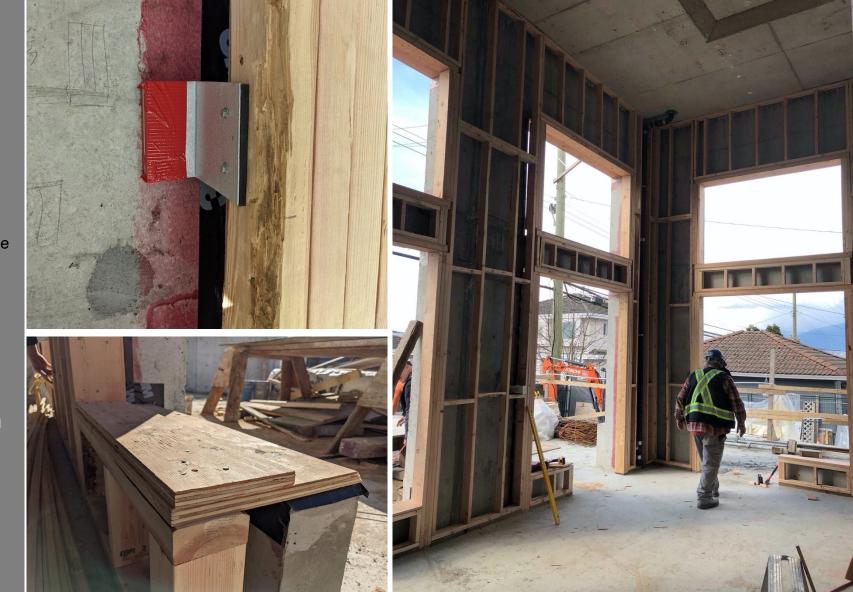

compactness

window / shading

materials / building science

details / mock-up

DESIGN TEAM

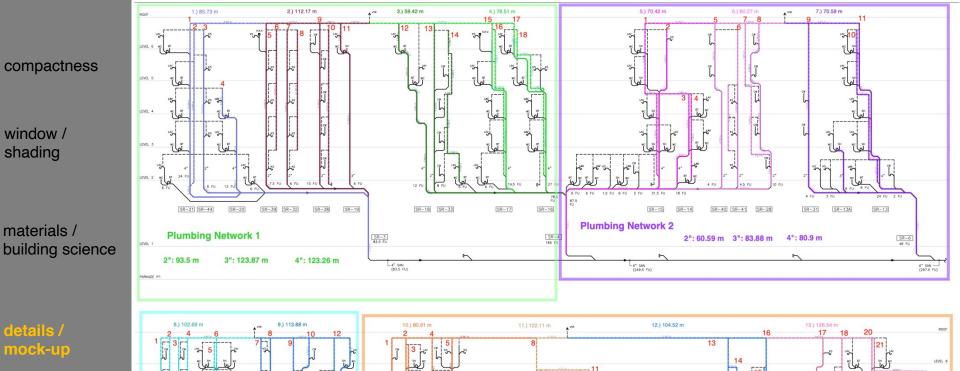

CONSTRUCTION TEAM

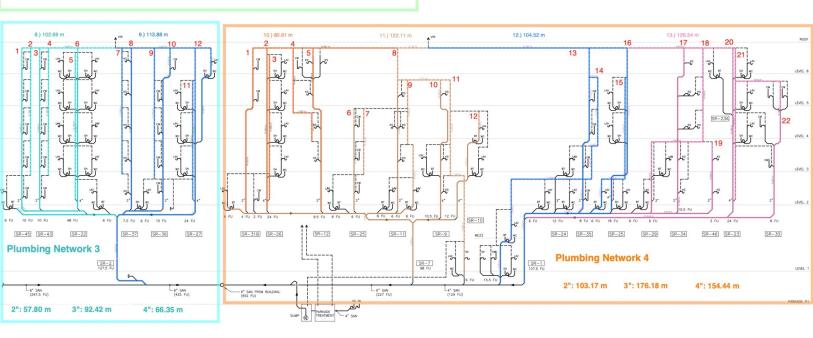
compactness

window / shading

materials / building science

details / mock-up





DESIGN TEAM

CONSTRUCTION TEAM

compactness

window / shading

materials / building science

details / mock-up

commissioning

Air Admittance Valves

DESIGN TEAM

Limit the pressure fluctuations within the drainage system, and to protect water trap seals

CORNERSTONE

Positive Air Pressure Attenuator

Provides complete protection against positive and negative pressures in the system

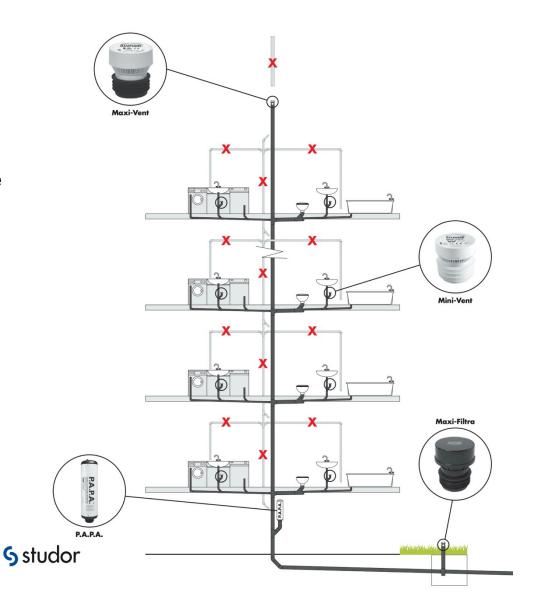
DESIGN TEAM

compactness

window / shading

materials / building science

details / mock-up


commissioning

Ideal AAV solution as recommended by the manufacturer, because it saves venting pipes

So far, it hasn't been accepted in the City of Vancouver

Losses through venting pipe can add up to 1 kWh/m²a

CONSTRUCTION TEAM

DESIGN TEAM

compactness

THEMES

window / shading

materials / building science

details / mock-up

commissioning

design challenges

design decisions

energy model

verification

constructability

cost

schedule

trades education

compactness

window / shading

materials / building science

details / mock-up

commissioning

DESIGN TEAM

Typical blower door set-up

For passive house, a single blower should be adequate

Building needs to be empty Typically done on weekend

CONSTRUCTION TEAM

compactness

window / shading

materials / building science

details / mock-up

CONSTRUCTION TEAM

Preparing the building for air tightness test takes resources and time

Create access for items that needs to be sealed

We recommend contractor have their own blower to pretest for air leakage

DESIGN TEAM

CONSTRUCTION TEAM

compactness

window / shading

materials / building science

details / mock-up

commissioning

When there is no interior corridor, we need air connections between suites Walls must be repaired after air test

compactness

window / shading

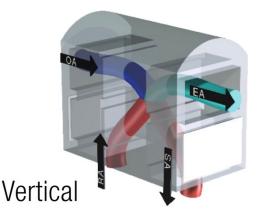
materials / building science

details / mock-up

DESIGN TEAM

Passive House Institute Certificate Dr. Wolfgang Feist Certified Passive House Component 64283 Darmstadt For cool, temperate climates, valid until 31 December 2018 GERMANY Heat recovery unit Category: Ventacity Systems, Inc. Manufacturer: 97201 Portland, UNITED STATES Certified for air **VS1000 RT** flow rates of Product name: 500 - 1100 m³/h At an external pressure This certificate was awarded based on the following of 228 Pa 1) criteria: Requirements non residential buildings Thermal comfort ⊖supply air ≥ 16.5 °C (Therewith device also at $\theta_{outdoor air} = -10 \ ^{\circ}C$ applicable for residential building) η_{HR,eff} ≥ 75% Effective heat recovery rate $P_{el} \leq 0.45 \text{ Wh/m}^3$ Electric power consumption η_{HR,eff} 82% Performance number ≥ 10 Airtightness Interior and exterior air leakage rates less than 3% of nominal air flow rate Balancing and adjustability Air flow balancing possible: yes Electric power Automated air flow balancing: yes²⁾ consumption Sound insulation It is assumed that large ventilation 0.45 Wh/m3 units are installed in a separate building services room. Sound levels documented in the appendix of this certificate Performance Indoor air quality Outdoor air filter F7 number Extract air filter G4 9.4 3) Frostprotection Frost protection required Different strategies mentioned in the appendix of this certificate 1) Available pressure difference with installed filter: 180 Pa. Additional components (e.g. heater coil) decrease the available pressure * difference accordingly 2) Air flow balance to be set within the framework of adjustment K 3) Recommended performance number is deceeded. Further information can be found in the appendix of this certificate. CERTIFIED COMPONENT www.passivehouse.com 0931vl03 Passive House Institute

Certified units are easier for modeling and certifying



TPHI

Making Buildings Healthy - Efficient - Smarter

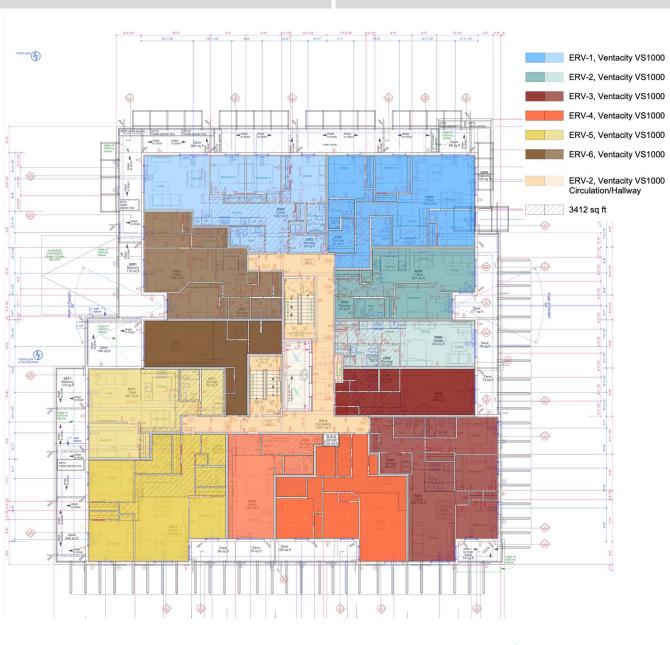
CONSTRUCTION TEAM

DESIGN TEAM

CORNERSTONE

architecture

compactness

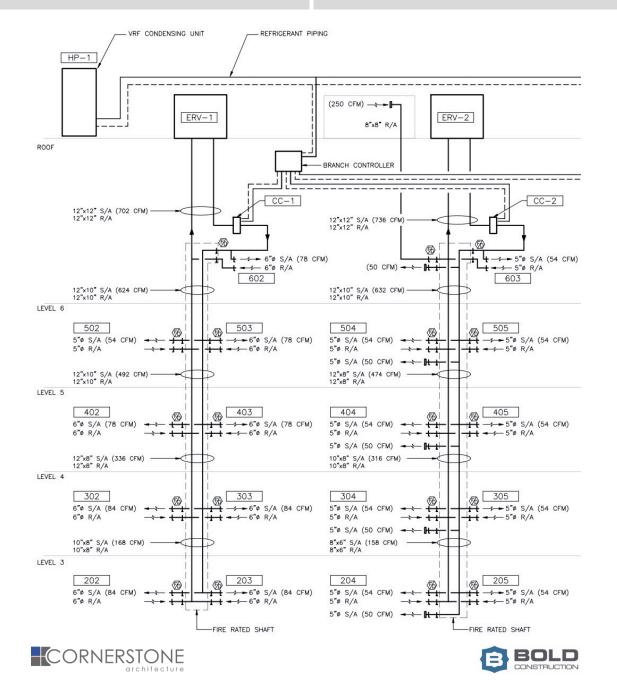

window / shading

materials / building science

details / mock-up

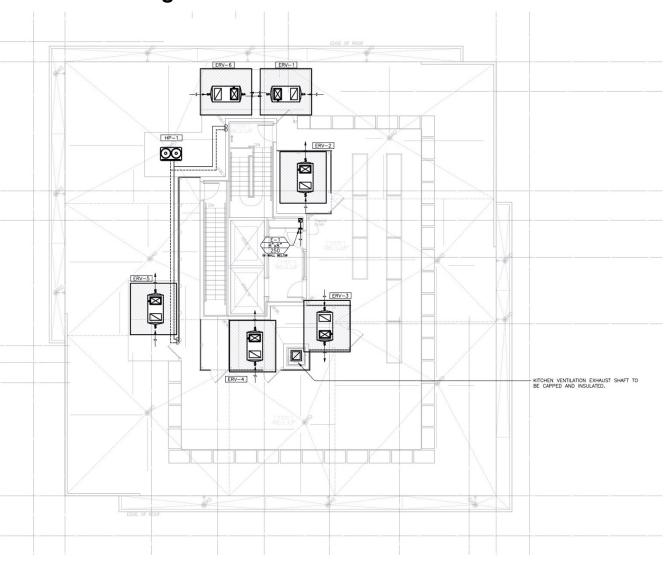
commissioning

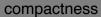
DESIGN TEAM


compactness

window / shading

materials / building science


details / mock-up



DESIGN TEAM

ERV on roof with dx coil in the ceiling below

THEMES

window / shading

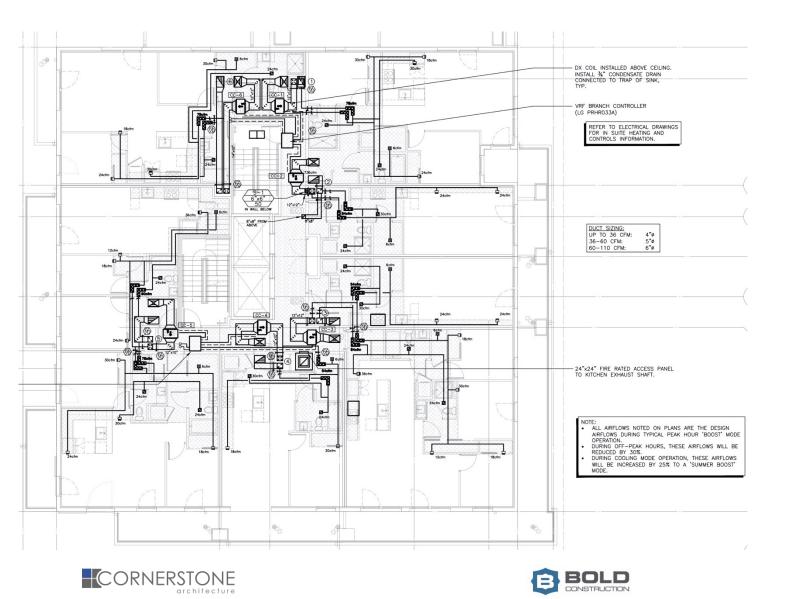
materials / building science

details / mock-up

compactness

window / shading

materials / building science

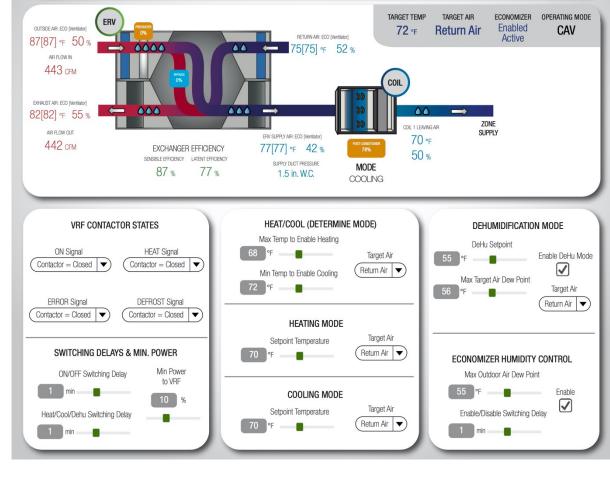

details / mock-up

commissioning

DESIGN TEAM

ERV on roof with dx coil in the ceiling below

compactness


window / shading

materials / building science

details / mock-up

commissioning

Units need to be commissioned and monitored for performance and maintenance

DESIGN TEAM

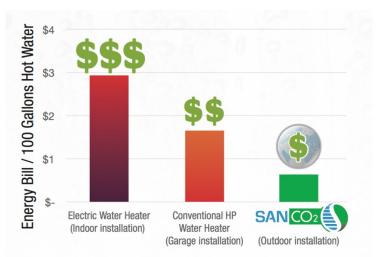
The Ventacity ERV controls the cooling based on the return temperature

CONSTRUCTION TEAM

DESIGN TEAM

CONSTRUCTION TEAM

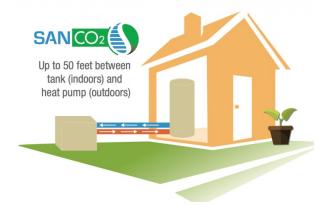
compactness


window / shading

materials / building science

details / mock-up

commissioning



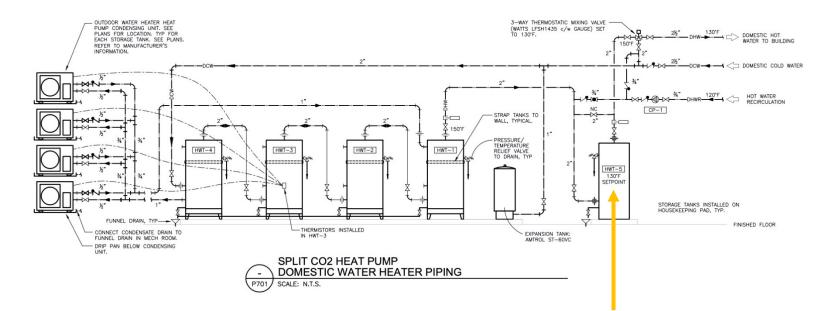
Energy Bill Comparison with traditional water heaters

Cost effective solution with a COP of 3.5-4

CO2 is the refrigerant which is a low impact greenhouse gas

DESIGN TEAM

compactness


window / shading

materials / building science

details / mock-up

commissioning

Heat pumps needs large storage tanks and generate hot water over about 14 hours a day

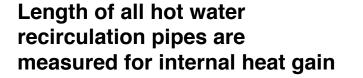
Most efficient when they lift water temperature from incoming city supply to 150°F

Electric resistance tank to make up recirculation losses

DESIGN TEAM

CONSTRUCTION TEAM

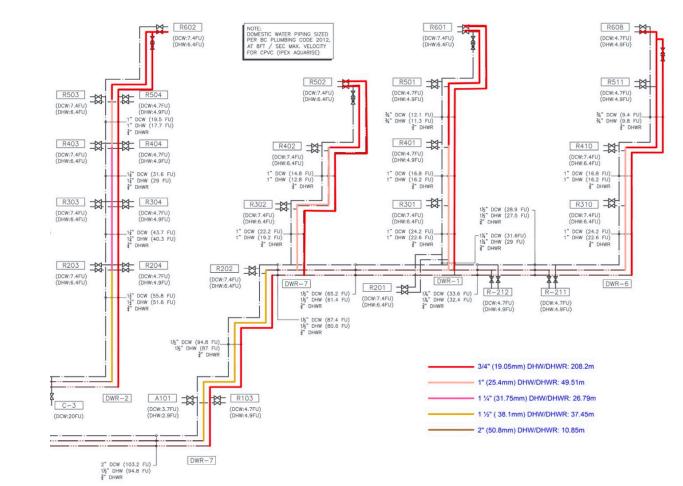
compactness


window / shading

materials / building science

details / mock-up

commissioning



CORNERSTONE

Hot water pipes need high level of insulation

CONSTRUCTION TEAM

DESIGN TEAM

compactness

THEMES

window / shading

materials / building science

details / mock-up

commissioning

design challenges

design decisions

energy model

verification

constructability

cost

schedule

trades education

